
(12) United States Patent
Robertson et al.

US008229735B2

(10) Patent No.: US 8,229,735 B2
(45) Date of Patent: Jul. 24, 2012

(54) GRAMMAR CHECKER FOR
VISUALIZATION

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)
(58)

Inventors: George G. Robertson, Seattle, WA
(US); Brian Scott Ruble, Redmond, WA
(US); William G. Morein, Cambridge,
MA (US): Sean Michael Boon,
Snoqualmie, WA (US); Nathan Paul
McCoy, Woodinville, WA (US); Jakob
Peter Nielsen, Redmond, WA (US);
Michael Ehrenberg, Seattle, WA (US);
Joshua Wyndham Lee, Englewood, NJ
(US); Jason Joseph Weber, Burlington,
IA (US); Murali R. Krishnan, Kirkland,
WA (US); Stella Yick Chan, Redmond,
WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 654 days.

Appl. No.: 12/147,890

Filed: Jun. 27, 2008

Prior Publication Data

US 2009/0326921 A1 Dec. 31, 2009

Int. C.
G06F 7/27 (2006.01)
U.S. Cl. 704/9; 704/275; 704/272
Field of Classification Search 704/1-10,

704/257, 235, 275,231, 272; 715/236
See application file for complete search history.

130 4.

GRAMMARENGINE

GRAMMAR
FEEDBACK &

140

VISUALIZATION
TOOL

INTEGRATED FEEDBACK
WITH VISUALIZATION

(56) References Cited

U.S. PATENT DOCUMENTS

5,099.425. A 3/1992 Yuji et al.
5,677,835 A 10, 1997 Carbonell et al.
5,678,053 A 10, 1997 Anderson
5,694,603 A 12, 1997 Reiffin
5,940,847 A * 8/1999 Fein et al. T15,236
6,012,075 A 1/2000 Fein et al.
6,085,237 A 7/2000 Durham et al.
7,117,430 B2 10/2006 Maguire, III et al.
7.315,818 B2 * 1/2008 Stevens et al. TO4/235
7.324,947 B2 * 1/2008 Jordan et al. 704/275

2006, OO64446 A1 3/2006 Chien et al.
2006/023O352 A1 10, 2006 Nielsen
2008.OO 10597 A1 1/2008 Seemann et al.

OTHER PUBLICATIONS

Appan et al., “Interactive Visualization and Content Analysis of
Instant Messaging Networks'. Dec. 2004. In Arts Media and Engi
neering Program, ADU, AME-TR-2004-14. 4pgs.
"Checking Grammar', retrieved Apr. 24, 2008 from http://ec.hku.hk/
Writing turbocharger/proofing grammarc.htm, 9 pgs.
"Error Messages', msdn, Microsoft 2008, retrieved Apr. 24, 2008
from http://msdn2.microsoft.com/en-us/librarylaaS11267(printer).
aspx. 29 pgs.

* cited by examiner

Primary Examiner — Huyen X. Vo
(74) Attorney, Agent, or Firm — Lee & Hayes, PLLC

(57) ABSTRACT
A visualization development system is provided. The system
includes a visualization tool to develop one or more visual
izations and a grammar engine that operates with the visual
ization tool to automatically detect visualization problems
during the development of the visualizations.

20 Claims, 10 Drawing Sheets

- 100

120

WSUALIZATIONS

SUGGESTIONS

- 150
TOUSERS OUTPUT

INTERFACE

I "OIDH

US 8,229,735 B2 Sheet 1 of 10 Jul. 24, 2012

SNOILVZITV []SIA

U.S. Patent

NOIJLVZITV []SIA HALIWA XHOV 8IGIGHEIH CIHALVYHOTHALNI
TOOL NOIJLVZITIVOISIA

0S I

GIOV HORIEILNI JL[\d{L[]O S. RIGH SÍTI OL SNOILSEIOOTIS ?? XIOVEICIGHTH H YHVWIWN VYHO EINIONGH (HVWIWN VYHO
09 I

U.S. Patent Jul. 24, 2012 Sheet 3 of 10 US 8,229,735 B2

- 300
MONITOR USER 310
ACTIONS AND
COMMANDS

APPLY RULES AND 320
HEURISTICS TO
COMMANDS

340

GRAMMAR YES GENERATE
PROBLEMS
DETECTED)

FEEDBACK TO
ALERT USER

OTHER OPTIONS
AVAILABLE 2

PRESENT
ALTERNATIVE

FORMS,
COMMANDS,
OPTIONS

360

FIG 3

#7 “?IH

US 8,229,735 B2

STOOL NOIJLVWTHOHNI >STOOL LAGIONOC) 5STOOL TVOIHAIVYHO §STOOL ONITIGHCIOWN
e<,

ESTOOL ONINIWN V LVCI STOOL TVOIJLV WITH HILVW SOEHTOEHWNVXEI TOOL NOILVZITIVÍTISIA

U.S. Patent

US 8,229,735 B2 Sheet 6 of 10

TOOLJLNHNOd VNO O NOIJLVZITIVÍTSIAYHVWIWN VYHO

Jul. 24, 2012

009_x
U.S. Patent

N NDHEILLVA Z NYHOEHALLVd I NYHEILLVd

U.S. Patent Jul. 24, 2012 Sheet 7 of 10 US 8,229,735 B2

GRAMMAR 702
CHECKER

CHART ANIMATION
RENDERING MODULE

CHART
CONSTRUCTION

DISPLAY DEVICE

MODULE CHART(S)

734

...CHART COMPOSITING -> CHARTELEMENT
MODULE CHANGE MODULE

U.S. Patent Jul. 24, 2012 Sheet 8 of 10 US 8,229,735 B2

FEEDBACK COMPONENT

FIG. 8

U.S. Patent Jul. 24, 2012 Sheet 9 of 10 US 8,229,735 B2

F.4. 928
Operating System 910 i.perating System. /

i rum. -- 930 Applications
sessssssssssssssssssssssssssssss

- - - - - - - - - - - - - - - - i run.- 932

Modules
----------a 934
Data 912

& 914
& is is Processing

Unit Output
Y Device(s)

Interface Input
Device(s)

918
950 i

Network
Communication Interface

Connection(s)
948

Remote
Computer(s)

946

FIG. 9

U.S. Patent Jul. 24, 2012 Sheet 10 of 10 US 8,229,735 B2

? 1000
1030

SERVER(S)

1010

CLIENT(S)

CLIENT
DATA

STORE(S)

SERVER
DATA

STORE(S)

COMMUNICATION
FRAMEWORK

FIG 10

US 8,229,735 B2
1.

GRAMMAR CHECKER FOR
VISUALIZATION

BACKGROUND

Data visualization includes the use of interactive, sensory
representations, typically visual, of abstract data to reinforce
cognition, hypothesis building, and reasoning. Such visual
ization can take on many forms including information visu
alization and knowledge visualization, for example. Related
concepts include visual communications, and visual analytics
along with aspects such as education and product visualiza
tion. In all these visualization areas, tools are provided to help
designers generate a desired visualization. Before proceed
ing, a brief description of the relative areas is provided before
a discussion on available tools to Support visualization
designs.

Information visualization concentrates on the use of com
puter-supported tools to explore large amounts of abstract
data. Practical application of information visualization in
computer programs involves selecting, transforming and rep
resenting abstract data in a form that facilitates human inter
action for exploration and understanding. Some aspects of
information visualization are the interactivity and dynamics
of visual representation, where strong techniques enable the
user to modify the visualization in real-time, thus affording
unparalleled perception of patterns and structural relations in
the abstract data in question.

Knowledge visualization includes the use of visual repre
sentations to transfer knowledge between at least two people
and its goals are to improve the transfer of knowledge by
using computer and non-computer based visualization meth
ods in a complimentary manner. Examples of Such visual
formats are sketches, diagrams, images, objects, interactive
visualizations, information visualization applications and
imaginary visualizations as in stories. While information
visualization concentrates on the use of computer-supported
tools to derive new insights, knowledge visualization focuses
on transferring insights and creating new knowledge in
groups. Beyond the mere transfer of facts, knowledge visu
alization desires to further transfer insights, experiences, atti
tudes, values, expectations, perspectives, opinions, and pre
dictions by using various complementary visualizations.

Visual communication is the communication of ideas
through the visual display of information. Primarily associ
ated with two dimensional images, it includes: alphanumeric
components, art, signs, and electronic resources, for example.
Recent research in the field has focused on web design and
graphically oriented usability. A related term, visual analyt
ics, focuses on human interaction with visualization systems
as part of a larger process of data analysis. Visual analytics has
been defined as the science of analytical reasoning Supported
by the interactive visual interface. Its focus is on human
information discourse (interaction) within large, dynamically
changing information spaces. Visual analytics research con
centrates on Support for perceptual and cognitive operations
that enable users to detect the expected and discover the
unexpected in complex information space. Technologies
resulting from visual analytics find their application in almost
all fields, but are being driven by critical needs (and funding)
in biology and national security.

Educational visualization is using a simulation normally
created on a computer to create an image of Something so it
can be taught about. This is useful when teaching about a
topic which is difficult to otherwise see, for example, atomic
structure, since atoms are far too small to be studied easily
without expensive and difficult to use Scientific equipment. It

10

15

25

30

35

40

45

50

55

60

65

2
can also be used to view past events, such as viewing dino
saurs, or looking at items that are difficult or fragile to observe
in reality like the human skeleton, without causing physical or
mental harm to a Subjective Volunteer or cadaver.

ProductVisualization involves visualization software tech
nology for the viewing and manipulation of 3D models, tech
nical drawing and other related documentation of manufac
tured components or large assemblies of products. It is a key
part of Product Lifecycle Management. Product visualization
software typically provides high levels of simulated realism
so that a product can be viewed before it is actually manufac
tured. This Supports functions ranging from design and styl
ing to sales and marketing. Technical visualization is an
important aspect of product development. With all these visu
alization techniques and others, development tools are pro
vided to enable users to design desired visualizations.
Although enhancements such as static help files have been
embedded within such tools to aid a respective designer with
questions when operating the tools, dynamic processes Such
as real-time checking of visualizations and related develop
ment processes is lacking in existing tools.

SUMMARY

The following presents a simplified Summary in order to
provide a basic understanding of Some aspects described
herein. This Summary is not an extensive overview nor is
intended to identify key/critical elements or to delineate the
Scope of the various aspects described herein. Its sole purpose
is to present some concepts in a simplified form as a prelude
to the more detailed description that is presented later.
A visualization grammar System is provided that checks

visualization development in real time and provides feedback
to designers to enable accurate and efficient development of
visualizations. A grammar engine is provided that operates in
conjunction with a visualization development tool. Such tool
can be applied to Substantially any area of visualization devel
opment including Scientific visualizations, technical visual
izations, information visualizations, knowledge visualiza
tions, education visualizations, product visualizations, along
with visual communications, and visual analytics, for
example. The grammar engine operates in the background as
respective visualizations are being developed. Intelligent pro
cesses can interact with the designer to make Suggestions for
enhancements to the visualizations.

In another aspect, the grammar engine acts as a grammar
checker for visualizations where potential defects in a visu
alization design are called to the attention of the designer. For
example, it might be pointed out in a feedback window that an
axis laid-out for a particular visualization has potentially
promoted a conflict in another area of the visualization.
Grammar can include checking the structure and form of
visualization commands as well as checking or analyzing the
actual output of the visualization for potential errors or warn
ings. Feedback including grammar checking and automated
Suggestions can be generated in a separate process output
from the visualization or can be integrated with the visualiza
tion itself.
To the accomplishment of the foregoing and related ends,

certain illustrative aspects are described herein in connection
with the following description and the annexed drawings.
These aspects are indicative of various ways which can be
practiced, all of which are intended to be covered herein.
Other advantages and novel features may become apparent

US 8,229,735 B2
3

from the following detailed description when considered in
conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustrating a visual
ization grammar system for generating visualizations.

FIG. 2 is a block diagram that illustrates various grammar
detection examples.

FIG. 3 is a flow diagram that illustrates a visualization 10
grammar checking process.

FIG. 4 illustrates visualization tool examples.
FIG. 5 illustrates an exemplary development system for

visualizations.
FIG. 6 illustrates a system that employs common patterns 15

for visualizations.
FIG. 7 illustrates an example system for transitioning or

morphing between dynamic display visualizations.
FIG. 8 illustrates an example visualization transition.
FIG. 9 is a schematic block diagram illustrating a suitable 20

operating environment.
FIG. 10 is a schematic block diagram of a sample-comput

ing environment.

DETAILED DESCRIPTION 25

Systems and methods are provided to facilitate efficient
generation and creation of visualizations. In one aspect, a
visualization development system is provided. The system
includes a visualization tool to develop one or more visual- 30
izations and a grammar engine that operates with the visual
ization tool to automatically detect visualization problems
during the development of the visualizations. The develop
ment of the visualizations includes design, layout, creation,
simulation, animation, views, and production of the visual- 35
izations, for example. A feedback component automatically
generates grammar Suggestions to a user or integrates feed
back with the visualizations.
As used in this application, the terms “component,” “tool.”

“engine.” “visualization.” and the like are intended to refer to 40
a computer-related entity, either hardware, a combination of
hardware and Software, Software, or software in execution.
For example, a component may be, but is not limited to being,
a process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a com- 45
puter. By way of illustration, both an application running on
a server and the server can be a component. One or more
components may reside within a process and/or thread of
execution and a component may be localized on one com
puter and/or distributed between two or more computers. 50
Also, these components can execute from various computer
readable media having various data structures stored thereon.
The components may communicate via local and/or remote
processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interacting 55
with another component in a local system, distributed system,
and/or across a network Such as the Internet with other sys
tems via the signal).

Referring initially to FIG. 1, a visualization grammar sys
tem 100 is illustrated for generating and designing visualiza- 60
tions. The visualization grammar system 100 facilitates visu
alization development in real time and provides feedback 110
to designers to enable accurate and efficient development of
one or more visualizations 120. A grammar engine 130 oper
ates in conjunction with a visualization development tool 65
140, where such tool can be employed to design, develop,
layout, create, simulate, animate, view, and produce the visu

4
alizations 120. The visualization tool 140 can be applied to
Substantially any area of visualization development including
Scientific visualizations, technical visualizations, informa
tion visualizations, knowledge visualizations, education
visualizations, product visualizations, along with visual com
munications, and visual analytics, for example. The grammar
engine 130 operates in the background (or foreground) and
monitors development as respective visualizations 120 (and
associated data) are being designed, viewed, or manipulated.
Intelligent or other processes can interact with the designer to
make Suggestions for enhancements to the visualizations 120
via feedback 110.

In another aspect, the grammar engine 130 acts as a gram
mar checker for the visualizations 120 where potential
defects in a visualization design are called to the attention of
the designer. For example, it might be pointed out in a feed
back window or output 150 that an axis laid-out for a particu
lar visualization has potentially promoted a conflict in
another area of the visualization. Grammar can include
checking the structure and form of visualization commands
as well as checking or analyzing the actual output of the
visualization for potential errors or warnings. Feedback
including grammar checking and automated Suggestions can
be generated in a separate process output 150 from the visu
alization or can be integrated with the visualization itself at
120.

In one aspect, the grammar engine 130 (or checker) for
visualizations 120 provides a set of rules that are well known
for how to interact/design visualizations, e.g., a bar chart
where the origin is not Zero and some notification is generated
as feedback 110 that the visualization may not be appropriate,
warn users, and so forth. This includes determining substan
tially all the activities that work well or do not work well with
the visualization 120 and allow the grammar engine 130 to
generate flags or other feedback 110 on what the user has
constructed or simulated. The grammar engine 130 can deter
mine common mistakes and inform users when design pro
cesses do not make sense based on heuristics, rules, or other
constructs (e.g., classifiers that are trained from previous
users of the system). Intermediate results can also be gener
ated as flags, warnings, or errors, where a completed visual
ization 120 does not have to be generated before such warn
ings or errors are generated to notify the user at 110 of
potential command, data, or other construct issue.

In another aspect, the grammar engine 130 promotes or
locates common patterns for interactions with visualizations.
This includes interactivity for visualizations, including how
do users tie a set of reactions/actions to a visualization, is the
visualization process something that can be queried, what are
the drag or other input/mouse actions, what are the valid
actions users can perform on that data, how do users change
the values of the data, bars, mouse, policies, and how the
visualization application determines a valid action, and so
forth. This also includes determining what is valid forges
tures that can be pushed down into a simulation and providing
feedback 110 on how users place data into the system and
then how do they determine what is valid data.
The grammar engine 130 can also provide a set of possible

actions or interactivity mechanisms one can use with a given
data set or determine what is appropriate for the visualization
120. The actions can be directed into the context of the data.
For example in a manufacturing setting, instructions to call a
Supplier, provide metadata within data that users are analyZ
ing to determine patterns that the data may be tied to, generate
visualizations based on manufacturing schedules, where yel
low bars are demand and blue bars are Supply. Thus, move
Supply in different locations, where one does not have to

US 8,229,735 B2
5

round-trip constantly back to a database but allows interact
ing in the visualization 120 itself to process potential views
based on a given data manipulation. Also provide the users
immediate feedback 110 if placing some visual item is at a
suitable location on the display and so forth.

In yet another aspect, a control language for visualizations
can be provided via the visualization tool 140 or the grammar
engine 130. This includes providing controls for visualiza
tions 120, separating the control language from event mecha
nisms for hosting business logic, and proceeding back to the
hosting application to query valid data ranges, and so forth.
The language can allow for discovering other services in a
cloud and integrating into the respective controls. For
instance, right clicking on a bar and discovering other pos
sible services that may be available for data or the visualiza
tion 120. The grammar engine 130 can also provide auto
mated Suggestions to help locate related data e.g., Suggestion
to use a public data source somewhere and pull that into a
spreadsheet, history of Voting records, and so forth. In yet
another aspect, when users are satisfied with a particular
visualization result, the visualization tool 140 or the grammar
engine 130 can provide commands to execute simulation runs
for desired visualizations or display alternative visualizations
120 that may also be desirable in view of the current visual
ization. In another aspect, a visualization system 100 is pro
vided. The system includes means for generating a visualiza
tion (e.g., visualization tool 140) and means for checking
input associated with generating the visualization (e.g., gram
mar engine 130). The system also includes means for receiv
ing feedback (e.g., output 150 or 160) relating to errors or
warnings associated with the visualization.

Referring now to FIG. 2, grammar detection examples 200
are illustrated that can be employed with a visualization
grammar checker 210. The detections examples 200 include
detecting whether or not overall plot settings such as fontsize,
thickness of characters, and the style of images in a given
visualization are suitable for the framework selected. This can
include detecting axis settings such that every axis can be
customized independently and located in a given view. Data
detections and options include analyzing labels, character
sizes, scale ranges, markings or distances, line or shape
lengths including direction Such as inwards, outwards and so
forth, color bar scales, and so forth. An interface can also
provided for data adjustments if an error is detected or for the
user to select one or more alternative options. Other detec
tions 200 include layouts, shape locations and spacing
between shapes or lines that a user can specify including
user-specified color bars, for example.

Vertical, horizontal, or other orientation lines/shapes can
be analyzed for fitness to a proposed data set or suitability for
a proposed visualization. This includes analyzing proposed
views in one or more dimensions such as if visualizations are
animated and transitions from one view to another. Other
detections examples where rules or heuristics can be applied
include analyzing iso-Surfaces Volume renderings. This can
include generating warnings when a command or other user
action is inconsistent with the tools capabilities or providing
alternative suggestions to a proposed visualization plan.
Other detections 200 where rules can be applied include
streamlines, streak-lines, and path-lines for example. The
grammar checker 210 can analyze tables, matrixes, charts
(e.g., pie chart, bar chart, histogram, function graph, Scatter
plot, and so forth) and graphs (e.g., tree diagram, network
diagram, flowchart, existential graph, and so forth). Other
types of grammar analysis can be applied to parallel coordi
nates—a visualization technique aimed at multidimensional
data, tree-map—a visualization technique for hierarchical

10

15

25

30

35

40

45

50

55

60

65

6
data, Venn diagrams, Euler diagrams, Chernoff faces, Hyper
bolic trees, and so forth. Substantially any type of drawing
action or command input that can be generated by a user can
be analyzed for potential errors by the grammar checker 210,
where along with detecting errors potential alternative visu
alization options can also be presented.

It is noted that the grammar checker 210 can operate in
various modes. For instance, one mode may be monitoring a
user's actions or commands and flagging or warning com
mand/input errors as they are detected within a design tool
environment. In yet another mode, the grammar checker 210
can provide alternative visualization options based upon
detected actions of a user Such as presenting alternative visu
alization forms, data manipulation options, and other Sugges
tions based on stored capabilities or learned patterns. The
grammar checker 210 can employ heuristics, rules, or com
parative techniques to detect potential visualization problems
or determine Suggestion options. This can include interac
tions with a visualization compiler that processes visualiza
tion commands to determine if the user has instructed or
commanded the visualization tool in a suitable manner con
sistent with previous rules, heuristics, or learned patterns.

Patterns can be learned from a group of users and rules
gleaned from past user mistakes. This can also include moni
toring a single user over time to learn common patterns of
commands or other inputs that may generate errors with a
visualization tool. An inference component (not shown) can
be employed to identify suitable steps, or methodologies to
accomplish the determination of a particular grammar rule or
procedure (e.g., observing a data pattern and determining a
Suitable visualization). Classifiers or other learning compo
nents can be trained from past observations where such train
ing can be applied to a visualization input directed to a design
tool. From current received input, future predictions regard
ing the nature, shape, or pattern can be predicted. Such pre
dictions can be used to provide one or more visualization
options as previously described or generate a potential error if
detected. The classifiers or other artificial intelligence-based
aspects can be affected via any Suitable machine learning
based technique or statistical-based techniques or probabilis
tic-based techniques or fuZZy logic techniques. Specifically,
learning models can be employed based upon Al processes
(e.g., confidence, inference). For example, a model can be
generated via an automatic classifier system.

Referring now to FIG.3, a visualization grammar checking
process 300 is illustrated. While, for purposes of simplicity of
explanation, the process is shown and described as a series or
number of acts, it is to be understood and appreciated that the
Subject process is not limited by the order of acts, as some acts
may, in accordance with the Subject processes, occur in dif
ferent orders and/or concurrently with other acts from that
shown and described herein. For example, those skilled in the
art will understand and appreciate that a methodology could
alternatively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all illustrated
acts may be required to implement a methodology in accor
dance with the subject processes described herein.

Turning to FIG. 3, an example process 300 is illustrated
that performs automated grammar checking for visualiza
tions. Proceeding to 310, a user's actions are monitored as
they utilize a visualization tool to design or generate a respec
tive visualization form or forms. The visualization forms can
be substantially any display or output type including graphs,
charts, trees, multi-dimensional depictions, video/audio dis
plays describing data, hybrid presentations where output is
segmented into multiple display areas having different data
analysis in each area and so forth. User actions include visu

US 8,229,735 B2
7

alization command inputs or graphical gestures directed at
the visualization tool where a grammar checker can be
applied to analyze Such actions. At 320, rules or heuristics are
applied to the user commands that were monitored at 310.
This can include comparative grammaranalysis to ensure that
commands have been entered correctly. More sophisticated
analysis can include analyzing patterns and fits to proposed
areas of a visualization or output. For instance, does a user's
current rendering of data conform to stored logical param
eters for presentation of the respective data.

Proceeding to 330, a determination is made as to whether
or not grammar problems have been detected with the moni
tored actions and in view of the rules or heuristics. If one or
more potential problems have been detected at 330, the pro
cess generates an error message or warning to the user at 340
before proceeding to 350. Such error or warning can be
included/integrated as output in the actual visualization itself
if desired. If no errors or potential warnings are detected at
330, the process proceeds to 350, where a determination is
made as to whether or not other visualization options are
available. Such decisions can be made from stored user
actions that are detected in context of current user actions.
These decisions can also be gleaned from user databases via
data mining or other learning activities. If other visualization
options are available at 350, the process presents alternative
commands, visualization forms, drawing Suggestions, or
other options at 350 before proceeding back to 310 to monitor
further user activities.

If other options are not available in view of present user
directives at 350, the process proceeds back to 310 to monitor
other user actions. It is noted that alternative visualization
options can be presented (e.g., form or shape proposed in
view of another form or shape, or data processing or other
presentation options presented, suggest table for this portion
of visualization and three-dimensional graph for another por
tion of visualization). Alternative tool commands and data
processing options can also be provided.

Referring now to FIG. 4, visualization tool examples 400
are illustrated, where the visualization tools can be employed
with the grammar checking components described above. It is
to be appreciated that only a few possible tool examples 400
are described for illustrative purposes yet visualization gram
mar checking can be applied to Substantially any type of
visualization system. In one example, visualization tools can
include mathematical tools 410. This can include statistical
tools to Summarize or describe a collection of data including
descriptive statistics. In addition, patterns in data may be
modeled in a manner that accounts for randomness and uncer
tainty in the observations, and then used to draw inferences
about the process or population being studied which is
referred to as inferential statistics. Both descriptive and infer
ential statistics comprise applied Statistics. There is also a
discipline called mathematical statistics, which is concerned
with the theoretical basis of the subject. Thus, any tool that
models mathematical data in a visual form can be employed
with the grammar checking rules described above.

In another tools example, data mining tools 420 can be
employed to visualize data. Data mining is the process of
sorting through large amounts of data and selecting relevant
information. It is usually used by business intelligence orga
nizations, and financial analysts, but is increasingly being
used in the sciences to extract information from the large data
sets generated by modern experimental and observational
methods. In another tool example, various modeling tools 430
can be employed to visualize data. This can include Scientific
modeling which is the process of generating abstract, concep
tual, graphical and or mathematical models. Science offers a

10

15

25

30

35

40

45

50

55

60

65

8
collection of methods, techniques and theory about all types
of specialized scientific modeling.

Other types of tools 400 include graphical tools 430.
Graphs are often represented pictorially using dots to repre
sent vertices, and arcs to represent the edges between con
nected vertices. Arrows can be used to show the orientation of
directed edges. Note that this graphical representation (a
graph layout or an embedding) should not be confused with
the graph itself (the abstract, non-graphical structure). Thus,
different layouts can correspond to the same graph. In the
abstract, all that matters is which vertices are connected to
which others by how many edges. In the concrete, however,
the arrangement of these vertices and edges impacts under
standability, usability, fabrication cost, and aesthetics. These
types of decisions can be run through the grammar engine to
determine whether or not graphs have been described in a
suitable manner with respect to the capabilities of the tool.

Rules can be applied to: force-based layouts including
gradient-descent minimization of an energy function based
on physical metaphors related to molecular mechanics; spec
tral layout: layout using as coordinates the eigenvectors of a
matrix Such as the Laplacian derived from the adjacency
matrix of the graph; orthogonal layout: layout with edges
running horizontally or vertically, with approaches that
reduce the number of edge crossovers and area covered; sym
metric layout: these attempt to find symmetry groups within
the graph; tree layout: these show a rooted tree-like forma
tion, Suitable for trees (e.g., graphs without cycles); and hier
archical layouts: these attempt to finda Source and sink within
a directed graph and arrange the nodes in layers with most
edges starting from the source and flowing in the direction of
the sink.

In yet another tool example 400, one or more concept tools
450 can be provided. For instance, these types of tools 400
may help visualize a conceptual graph that is a notation for
logic based on Semantic networks of artificial intelligence.
This may also include concept mapping for visualizing the
relationships among different concepts, where a concept map
is a diagram showing the relationships among concepts. Con
cepts can be connected with labeled arrows, in a downward
branching hierarchical structure. In yet another tools example
400, information tools 460 can be employed with a grammar
checking engine. Information graphics are visual representa
tions of information, data or knowledge. These graphics are
used anywhere where information needs to be explained
quickly or simply, Such as in signs, maps, journalism, tech
nical writing, education, and so forth. They are also used
extensively as tools by computer scientists, mathematicians,
and statisticians to ease the process of developing and com
municating conceptual information. They are applied in most
aspects of Scientific visualization.

Referring to FIG. 5, an exemplary development system 500
for visualizations. The system 500 includes a database com
ponent 510 for storing visualization designs and other data
Such as rules or heuristics that may be employed by a gram
mar component 520. An output component 530 is provided
for viewing visualizations and receiving feedback from the
grammar component 520. An input component 540 allows for
visualization commands and other input to the system 500.
This can include typed, spoken, facial, or gesture-based com
mands.

Generally, the system 500 provides an integrated develop
ment environment (IDE) which is a software application that
provides comprehensive facilities to computer programmers
for development. In this case, the system 500 provides for
development of visualizations with the grammar component
520 monitoring such development for errors or suggestions.

US 8,229,735 B2
9

An IDE normally consists of a source code editor, a compiler
and/or interpreter, build automation tools, and (usually) a
debugger. Sometimes a version control system and various
tools are integrated to simplify the construction of a graphical
user interface (GUI). Many modern IDEs also have a class
browser, an object inspector, and a class hierarchy diagram,
for use with object oriented visualization development.

Typically, IDEs are designed to maximize programmer
productivity by providing tightly-knit components with simi
lar user interfaces. This should mean that the programmer has
much less mode Switching to do than when using discrete
development programs. The IDE is generally dedicated to a
specific programming language, so as to provide a feature set
which most closely matches the programming paradigms of
the language however that is not a requirement. Also, IDEs
typically present a single program in which all development is
achieved. This program typically provides many features for
authoring, modifying, compiling, deploying and debugging
visualizations. The goal is to abstract the configuration nec
essary to piece together command line utilities in a cohesive
unit, which theoretically reduces the time to learn a language,
and increases developer productivity. It is also thought that
the tight integration of development tasks can further increase
productivity. For example, code can be compiled while being
written, providing feedback on syntax errors via the grammar
component 520.

It is noted that an interface (not shown) can be provided to
facilitate modeling data and designing visualizations based
off the data. This can include a Graphical User Interface
(GUI) to interact with the user or other components such as
any type of application that sends, retrieves, processes, and/or
manipulates data, receives, displays, formats, and/or commu
nicates data, and/or facilitates operation of the system. For
example, Such interfaces can also be associated with an
engine, server, client, editor tool or web browser although
other type applications can be utilized.
The GUI can include a display having one or more display

objects (not shown) for manipulating electronic sequences
including such aspects as configurable icons, buttons, sliders,
input boxes, selection options, menus, tabs and so forth hav
ing multiple configurable dimensions, shapes, colors, text,
data and sounds to facilitate operations with the profile and/or
the device. In addition, the GUI can also include a plurality of
other inputs or controls for adjusting, manipulating, and con
figuring one or more aspects. This can include receiving user
commands from a mouse, keyboard, speech input, web site,
remote web service and/or other device such as a camera or
video input to affect or modify operations of the GUI.

Referring now to FIG. 6, a system 600 illustrates employ
ing common patterns for visualizations. In this aspect, one or
more common visualization patterns 610 can be stored, where
Such patterns can be presented to a user via a grammar com
ponent 620 and/or visualization tool 630. The patterns 610
can be employed to assist visualization development. For
instance, as noted previously, the patterns can be employed to
alert users to visualization options such as what are the drag
actions, what are the valid actions users can perform on that
data, how do users change the values of data, alerting how an
application determines what a valid action is, and so forth.
This includes what are the valid gestures for a simulation,
how users get data into system, and how do they determine
valid data. The patterns 610 can provide a set of possible
actions or interactivity mechanisms or what is appropriate for
a respective visualization.

Referring to FIG. 7, an example system 700 is illustrated
for transitioning or morphing between dynamic display visu
alizations. As shown, a grammar checker 702 is associated

10

15

25

30

35

40

45

50

55

60

65

10
with a chart construction module 704. In general, a Charting
Animator process generally begins operation by using the
chart construction module 704 to define parameters used to
construct one or more charts (e.g., Pie Charts, Bar Charts,
Line Charts, Area Charts, Plateau Charts, etc.) using one or
more sets of chart data 710. The chart construction module
704 then provides these parameters to a chart animation ren
dering module 720 which renders chart(s) 730 on a display
device 734 (or surface). In each of the following examples
associated with FIG. 7 that utilize chart construction module
704, grammar checker 702 is consulted to verify that the
newly constructed chart passes all of the grammar checks,
and uses grammar checker 702 to correct any problems that
are detected.
When the chart(s) 730 have been rendered on the display

device 734, changes to the rendered chart(s) are enabled using
any of several aspects. For example, in one aspect, a user
interface module 740 is utilized to modify one or more of data
elements comprising the chart data 710 via a data input mod
ule 750. Modifications to these data elements include chang
ing the value of one or more of the data elements, adding one
or more data elements, and deleting one or more data ele
ments. In general, these data elements are maintained in a
conventional computer readable format, such as, for example,
in a list, table, database, and so forth. Consequently, direct
modifications to the data elements by using a user interface to
change the data elements via the data input module 750 can be
accomplished using conventional techniques.
When data elements have been modified, the chart con

struction module 704 determines new chart parameters cor
responding to the modified data elements, and passes those
chart parameters to the chart animation rendering module
720. At this point, the chart animation rendering module 720
then morphs the existing charts(s) 730 into new chart(s) 730
using a dynamic animation that Smoothly transitions from the
existing chart(s) to the new chart(s) on the display device 734.

In another aspect, changes to the rendered chart(s) 730 are
enabled by directly modifying one or more elements of the
chart(s), Such as, for example, resizing the height of one or
more bars on a Bar Chart, or changing the size of a pie slice in
a Pie Chart. In various aspects, direct modification of the
elements of the chart(s) is accomplished via the user interface
module 740 which allows the user to select one or more
individual elements of one or more charts 730 using a graphi
cal user interface provided via a chart element change module
760. This graphical user interface provides a graphical inter
face to chart(s) 730 being rendered on the display device 734
for resizing, moving, sorting, or deleting one or more of those
chart elements. Similarly, chart elements can also be added to
one or more of the chart(s) 730 via the graphical user interface
provided by the chart element change module 760.
When any chart elements have been modified (by resizing,

moving, sorting, deleting, adding, etc.), the chart element
change module 760 then automatically modifies the corre
sponding data elements of the chart data 710 (or adds new
values to the chart data) to fit changes made to the chart
elements. For example, if a bar in a Bar Chart originally had
a value of “10, then that bar was resized via the chart element
change module 760 to show a value of “5” on the display
device 734, then the chart element change module can change
the value of the corresponding data element to “5” in the chart
data 710.

Depending upon the chart(s) being displayed, many of the
chart elements are often interdependent. Consequently,
changes to one data element (either via the data input module
750, or via the chart element change module 760) used to
construct the chart will often have an effect either on other

US 8,229,735 B2
11

data values, or on the displayed chart(s) 730. For example, if
a pie slice in a Pie Chart is deleted or resized, or the underly
ing data value is changed, the other slices in the Pie Chart can
be resized so that the Pie Chart retains a full pie shape.
Therefore, when a change to data elements of the chart data
710 occurs (by any mechanism described herein), the chart
construction module 704 determines new chart parameters
corresponding to the modified data elements, and passes
those chart parameters to the chart animation rendering mod
ule 720. At this point, the chart animation rendering module
720 then morphs the existing charts(s) 730 into new chart(s)
730 utilizing a dynamic animation that smoothly transitions
from the existing chart(s) to the new chart(s) on the display
device 734

In yet another aspect, a chart compositing module 770 is
accessed via the user interface module 740 for creating a
composite chart from two or more existing charts 730. In
general, the user can use the chart compositing module 770 to
specify (or select from a predefined list) Some mathematical
relationship between two or more existing charts 730. This
mathematical relationship is then used to construct a compos
ite chart by passing composite chart parameters to the chart
construction module which in turn passes those parameters to
the chart animation rendering module which acts to render the
composite chart on the display device as an animation that
morphs the existing charts into the composite chart.

Referring to FIG. 8, an example visualization transition is
illustrated. In general, the system 700 previously described
has the ability to morph chart elements of one shape into chart
elements of another shape, Such as, for example, morphing to
or from a rectangle to a line segment, area segment, or pie
slice. This morphing is generally achieved by moving exist
ing points of the various chart elements to create the new
shapes, then rendering intermediate shapes to create the ani
mated transition. Further, in addition to moving points to
define a new shape, various animation components introduce
new points as needed. For example, a pie slice employs many
more points than a rectangular bar of a Bar Chart; so, when
transitioning from a bar to a pie slice, more points are added—
and when transitioning away from a pie slice, those extra
points are removed.

Changing the shape of chart elements from one shape to
another, such as, for example, changing a rectangular bar of a
Bar Chart to a polygon of an Area Chart, or changing a
rectangular bar of a Bar Chart to a pie slice of a Pie Chart is
achieved by smoothly morphing the chart element from the
original shape to the new shape to provide an animated tran
sition between the shapes. This morphing can be accom
plished using any of a number of morphing techniques.

For example, in one aspect, as illustrated by FIG. 8, a
rectangular bar of a Bar Chart is morphed into a polygon of an
Area Chart. Note that this example is not intended to limit the
way in which shapes are morphed, and is provided only as a
simple illustration of shape morphing techniques that may be
utilized by the various animation techniques described or
inferred herein.
A rectangle 800 defined by corner points {A, B, C, D is

changed to polygon 810 by translating point B by offset Y2.
and translating point C by offset Y2. Clearly, any of the four
points of rectangle 800 can be translated in either the X or Y
direction to provide the desired shape. Similarly, translating
Some or all of the points, depending upon the shape, is used
for Scaling the shape. For example, translating two or more of
points A, B and C towards (or away from) point D can be used
to scale the size of rectangle 800 either up or down. Further,
any one of the four points of rectangle 800 can be collapsed
into another of those points to create a triangle from the

10

15

25

30

35

40

45

50

55

60

65

12
rectangle 800. In any case, once the points of the new shape
have been determined, the animation from the original shape
to the new shape is created by simply rendering a sequence of
intermediate images in steps as Small as one pixel for each
point, over Some period of time. As can be appreciated, a
plurality of various shapes, forms, and associated dimensions
can be morphed or transitioned from one shape or form to
another. Also, a feedback component 820 is shown that can
provide errors, warnings, or Suggestions during the visualiza
tion based off of detected visualization grammar or rules as
described above.

In order to provide a context for the various aspects of the
disclosed subject matter, FIGS. 9 and 10 as well as the fol
lowing discussion are intended to provide a brief, general
description of a suitable environment in which the various
aspects of the disclosed subject matter may be implemented.
While the subject matter has been described above in the
general context of computer-executable instructions of a
computer program that runs on a computer and/or computers,
those skilled in the art will recognize that the invention also
may be implemented in combination with other program
modules. Generally, program modules include routines, pro
grams, components, data structures, etc. that performs par
ticular tasks and/or implements particular abstract data types.
Moreover, those skilled in the art will appreciate that the
inventive methods may be practiced with other computer
system configurations, including single-processor or multi
processor computer systems, mini-computing devices, main
frame computers, as well as personal computers, hand-held
computing devices (e.g., personal digital assistant (PDA),
phone, watch . . .), microprocessor-based or programmable
consumer or industrial electronics, and the like. The illus
trated aspects may also be practiced in distributed computing
environments where tasks are performed by remote process
ing devices that are linked through a communications net
work. However, some, if not all aspects of the invention can be
practiced on stand-alone computers. In a distributed comput
ing environment, program modules may be located in both
local and remote memory storage devices.

With reference to FIG.9, an exemplary environment 910
for implementing various aspects described herein includes a
computer 912. The computer 912 includes a processing unit
914, a system memory 916, and a system bus 918. The system
bus 918 couple system components including, but not limited
to, the system memory 916 to the processing unit 914. The
processing unit 914 can be any of various available proces
sors. Dual microprocessors and other multiprocessor archi
tectures also can be employed as the processing unit 914.
The system bus 918 can be any of several types of bus

structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any
variety of available bus architectures including, but not lim
ited to, 64-bit bus, Industrial Standard Architecture (ISA),
Micro-Channel Architecture (MSA), Extended ISA (EISA),
Intelligent Drive Electronics (IDE), VESA Local Bus (VLB),
Peripheral Component Interconnect (PCI), Universal Serial
Bus (USB), Advanced Graphics Port (AGP), Personal Com
puter Memory Card International Association bus (PCM
CIA), and Small Computer Systems Interface (SCSI).
The system memory 916 includes volatile memory 920 and

nonvolatile memory 922. The basic input/output system
(BIOS), containing the basic routines to transfer information
between elements within the computer 912, such as during
start-up, is stored in nonvolatile memory 922. By way of
illustration, and not limitation, nonvolatile memory 922 can
include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec

US 8,229,735 B2
13

trically erasable ROM (EEPROM), or flash memory. Volatile
memory 920 includes random access memory (RAM), which
acts as external cache memory. By way of illustration and not
limitation, RAM is available in many forms such as Synchro
nous RAM (SRAM), dynamic RAM (DRAM), synchronous
DRAM (SDRAM), double data rate SDRAM (DDR
SDRAM), enhanced SDRAM (ESDRAM), Synchlink
DRAM (SLDRAM), and direct Rambus RAM (DRRAM).

Computer 912 also includes removable/non-removable,
volatile/non-volatile computer storage media. FIG. 9 illus
trates, for example a disk storage 924. Disk storage 924
includes, but is not limited to, devices like a magnetic disk
drive, floppy disk drive, tape drive, Jaz, drive, Zip drive,
LS-100 drive, flash memory card, or memory stick. In addi
tion, disk storage 924 can include storage media separately or
in combination with other storage media including, but not
limited to, an optical disk drive such as a compact disk ROM
device (CD-ROM), CD recordable drive (CD-R Drive), CD
rewritable drive (CD-RW Drive) or a digital versatile disk
ROM drive (DVD-ROM). To facilitate connection of the disk
storage devices 924 to the system bus 918, a removable or
non-removable interface is typically used such as interface
926.

It is to be appreciated that FIG. 9 describes software that
acts as an intermediary between users and the basic computer
resources described in suitable operating environment 910.
Such software includes an operating system 928. Operating
system 928, which can be stored on disk storage 924, acts to
control and allocate resources of the computer system 912.
System applications 930 take advantage of the management
of resources by operating system 928 through program mod
ules 932 and program data 934 stored either in system
memory 916 or on disk storage 924. It is to be appreciated that
various components described herein can be implemented
with various operating systems or combinations of operating
systems.
A user enters commands or information into the computer

912 through input device(s) 936. Input devices 936 include,
but are not limited to, a pointing device Such as a mouse,
trackball, stylus, touchpad, keyboard, microphone, joystick,
game pad, satellite dish, Scanner, TV tuner card, digital cam
era, digital video camera, web camera, and the like. These and
other input devices connect to the processing unit 914 through
the system bus 928 via interface port(s) 938. Interface port(s)
938 include, for example, a serial port, a parallel port, a game
port, and a universal serial bus (USB). Output device(s) 940
use some of the same type of ports as input device(s) 936.
Thus, for example, a USB port may be used to provide input
to computer 912 and to output information from computer
912 to an output device 940. Output adapter 942 is provided
to illustrate that there are some output devices 940 like moni
tors, speakers, and printers, among other output devices 940
that require special adapters. The output adapters 942
include, by way of illustration and not limitation, video and
Sound cards that provide a means of connection between the
output device 940 and the system bus 928. It should be noted
that other devices and/or systems of devices provide both
input and output capabilities Such as remote computer(s)944.

Computer 912 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s)944. The remote computer(s)944
can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer
device or other common network node and the like, and
typically includes many or all of the elements described rela
tive to computer 912. For purposes of brevity, only a memory
storage device 946 is illustrated with remote computer(s)944.

10

15

25

30

35

40

45

50

55

60

65

14
Remote computer(s) 944 is logically connected to computer
912 through a network interface 948 and then physically
connected via communication connection 950. Network
interface 948 encompasses communication networks such as
local-area networks (LAN) and wide-area networks (WAN).
LAN technologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Ether
net/IEEE 702.3, Token Ring/IEEE 702.5 and the like. WAN
technologies include, but are not limited to, point-to-point
links, circuit Switching networks like Integrated Services
Digital Networks (ISDN) and variations thereon, packet
switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 950 refers to the hardware/

software employed to connect the network interface 948 to
the bus 918. While communication connection 950 is shown
for illustrative clarity inside computer 912, it can also be
external to computer 912. The hardware/software necessary
for connection to the network interface 948 includes, for
exemplary purposes only, internal and external technologies
Such as, modems including regular telephone grade modems,
cable modems and DSL modems, ISDN adapters, and Ether
net cards.

FIG. 10 is a schematic block diagram of a sample-comput
ing environment 1000 that can be employed. The system 1000
includes one or more client(s) 1010. The client(s) 1010 can be
hardware and/or software (e.g., threads, processes, comput
ing devices). The system 1000 also includes one or more
server(s) 1030. The server(s) 1030 can also be hardware and/
or software (e.g., threads, processes, computing devices). The
servers 1030 can house threads to perform transformations by
employing the components described herein, for example.
One possible communication between a client 1010 and a
server 1030 may be in the form of a data packet adapted to be
transmitted between two or more computer processes. The
system 1000 includes a communication framework 1050 that
can be employed to facilitate communications between the
client(s) 1010 and the server(s) 1030. The client(s) 1010 are
operably connected to one or more client data store(s) 1060
that can be employed to store information local to the client(s)
1010. Similarly, the server(s) 1030 are operably connected to
one or more server data store(s) 1040 that can be employed to
store information local to the servers 1030. It is noted that
some of the computation may be performed on either side of
a network, with a thin visualization being local. Similarly,
mobile devices such as a cell phone can be applicable for
visualizations since there is only so much screen size, and
thus making a decision about what to show is relevant.
What has been described above includes various exem

plary aspects. It is, of course, not possible to describe every
conceivable combination of components or methodologies
for purposes of describing these aspects, but one of ordinary
skill in the art may recognize that many further combinations
and permutations are possible. Accordingly, the aspects
described herein are intended to embrace all such alterations,
modifications and variations that fall within the spirit and
scope of the appended claims. Furthermore, to the extent that
the term “includes” is used in either the detailed description or
the claims, such term is intended to be inclusive in a manner
similar to the term "comprising as "comprising is inter
preted when employed as a transitional word in a claim.

What is claimed is:
1. A computer-implemented system, comprising:
at least one processing unit;
a memory having instructions therein and readable by the

at least one processing unit, the instructions and the at
least one processing unit comprise a visualization devel

US 8,229,735 B2
15

oper, when the at least one processing unit executes the
instructions, the visualization developer comprising:

a visualization tool that outputs one or more visualization
forms based at least in part on user commands for the
visualization tool, the user commands having at least
one of a structure and a form; and

a visualization grammar engine that operates with the visu
alization tool to automatically check at least one of the
structure and the form of the user commands to detect
visualization problems in at least one outputted visual
ization form.

2. The system of claim 1, the development of the visual
ization forms includes design, layout, creation, simulation,
animation, views, and production of the visualization forms.

3. The system of claim 1, further comprising a feedback
component to generate grammar Suggestions to a user or
integrate feedback with the visualization forms.

4. The system of claim 1, the visualization tool includes a
mathematical component, a data mining component, a mod
eling component, a graphical component, a concept compo
nent, or an information component.

5. The system of claim 1, the grammar engine analyzes
visual settings of information displayable in the visualization
forms, data options, layout options, color options, line set
tings, shape configurations, text options, coordinates, trees,
maps, charts, or tables.

6. The system of claim 1, the grammar engine employs
rules or heuristics to analyze user commands, actions, or
gestures when designing or manipulating the visualization
forms.

7. The system of claim 6, the grammar engine is fed from a
data mining component or a learning component to enhance
the rules or heuristics.

8. The system of claim 1, the grammar engine generates
errors or warnings when detecting problems with a visualiza
tion form or visualization input to the visualization tool, the
visualization input being separate from the user commands.

9. The system of claim 1, wherein a first visualization form
of the one or more visualization forms includes first data, and
further comprising a component to generate automated Sug
gestions on how to locate second data related first data for at
least one visualization form of the one or more visualization
forms.

10

15

25

30

35

40

16
10. The system of claim 1, further comprising a simulation

component that can receive feedback from the grammar
engine.

11. The system of claim 1, further comprising a component
to store one or more visualization patterns.

12. The system of claim 11, the one or more visualization
patterns are associated with valid user actions.

13. The system of claim 11, the one or more visualization
patterns are associated with changing the values of data.

14. The system of claim 11, the visualization patterns are
associated with a work-flow process.

15. The system of claim 1, the grammar engine includes a
control language for a generating a visualization.

16. A visualization development method, comprising:
monitoring on a computing device a plurality of user com
mands that control a visualization tool that outputs one
or more visualization forms;

applying rules or heuristics to the user commands;
determining with a computing device if the user commands

conform to the rules or heuristics;
outputting one or more visualization forms from the visu

alization tool based at least on the user commands;
generating feedback to a user if the user commands do not

conform to the rules or heuristics based at least on the
output visualization forms; and

generating one or more visualization options after applying
the rules or heuristics.

17. The method of claim 16, further comprising generating
one or more options for locating data related to the content of
the visualization forms.

18. The method of claim 16, further comprising simulating
the visualization forms in accordance with the feedback.

19. The method of claim 16, further comprising integrating
the feedback with the visualization forms.

20. A visualization system, comprising:
means for generating a visualization form, the visualiza

tion form being at least one of a graph, a chart, a tree, a
multi-dimensional depiction, or a hybrid presentation
segmented into multiple display areas having different
data analysis in each area;

means for checking input commands associated with gen
erating the visualization; and

means for receiving feedback relating to errors or warnings
associated with the visualization.

k k k k k

