US 20140375657A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0375657 A1

Fortini et al. 43) Pub. Date: Dec. 25, 2014
(54) SYNCHRONIZATION POINTS FOR STATE 1) Appl. No.: 13/921,727
INFORMATION

(71) Applicant: Microsoft Corporation, Redmond, WA (22) Filed: Jun. 19, 2013

Us)

. Publication Classification
(72) Inventors: Christian Fortini, Sammamish, WA

(US); Brian E. Manthos, Sammamish, (51) Int.CL

WA (US); Grant A. Watters, Seattle, GO6T 120 (2006.01)

WA (US); Li-Hsin Huang, Redmond, (52) U.S.CL

WA (US); Richard K. James, Redmond, (@) G GO6T 1/20 (2013.01)
WA (US); Samuel R. Fortiner, USPC oo 345/502
Woodinville, WA (US); R. Scott Briggs,

Redmond, WA (US); Sergey Z. MalKin,

Redmond, WA (US); Yuanzhe Wang, (57) ABSTRACT

Redmond, WA (US); Rico Mariani,

Redmond, WA (US); Justin E. Rogers, Techniques for synchronization points for state information
Redmond, WA (US); Anjali S. Parikh, are described. In at least some embodiments, synchronization
Redmond, WA (US); Praveen Kumar points are employed to propagate state information among
Muralidhar Rao, Sammamish, WA different processing threads. A synchronization point, for
(US); Matthew P. Kotsenas, Seattle, WA example, can be employed to propagate state information
(US); Jason J. Weber, Medina, WA among different independently-executing threads. Accord-
(US); Nirankush Panchbhai, Redmond, ingly, in at least some embodiments, synchronization points
WA (US); Rossen Atanassov, Bellevue, serve as inter-thread communications among different inde-

WA (US); Peter Salas, Seattle, WA (US) pendently-executing threads.

500
.\

50

506

504

Tree 518 PSP 510

Tree 512

506

Patent Application Publication Dec. 25, 2014 Sheet 1 of 9 US 2014/0375657 A1

100\‘

rComputing Device ng\
e ™
Processor 104

\

(Applications 106 h
Web Platform
Application 108

O

f

\

Process Manager

Module 110
\.

e ™
Graphics Module
112
N
\,

Fig. 1

Patent Application Publication

200
SN

204

206

Dec. 25,2014 Sheet 2 of 9

US 2014/0375657 Al

202a

N
]
NS

>

Gr‘aphics Data
208 -4t PSP 210

%

PSP 210

%

202a |

202

S

~ —
-
—~
~

State Change
212

Patent Application Publication Dec. 25, 2014 Sheet 3 of 9 US 2014/0375657 A1

v
304
= >
308 —\ e ~
77| 302a
PSP _3_1_4_IPSP _3_1__2_IPSP 3_1_0_) < .
306 AR 302
k >
308 \ {
[PSP ;mIPSP w) ’
PSP 310 -
306 302
\I‘ ‘__j‘> L\\\\ /,,/"
State Change
310a
N

Patent Application Publication

400
N\

Dec. 25,2014 Sheet4 of 9

US 2014/0375657 Al

%

rd
<
~

-~
~
~
Ed
-
7
~
~
~
~
~
~

402a

ES
N

>
W

‘€ psp410

>

W

%

PSP 410

%

402a

02

v
404
I¥
406
N\
404
—\l\ L N
406
,\
X
404
_\
[
406
_\
N
N

. -
s ~ P
-

~... [State Change
410a

Patent Application Publication Dec. 25, 2014 Sheet S of 9 US 2014/0375657 A1

500
\

Y

504
\

Patent Application Publication Dec. 25, 2014 Sheet 6 of 9 US 2014/0375657 A1

600
N

7

604

Patent Application Publication Dec. 25, 2014 Sheet 7 of 9 US 2014/0375657 A1

First Thread Second Thread

s A
700
Determine a state change to be
propagated to another thread

\\ y
! 02 A 706)
Emit a synchronization point Retrieve the synchronization
that includes an indication of the y
state change point
\\ y
704) 708)
Proceed with performing other Process the synchronization
tasks after emitting the point to determine the state
synchronization point) change
710

Apply the state change

Patent Application Publication Dec. 25, 2014 Sheet 8 of 9 US 2014/0375657 A1

Primary Thread Render Thread

800
Generate a change to a visual
state of a graphical element

:

~
802
Emit a synchronization point that 806
includes an indication of the Retrieve the synchronization point
change to the visual state

' l

804 808
Proceed with performing other Process the synchronization point
tasks after emitting the to determine the change in the
synchronization point visual state of the graphical
element
810

Render the graphical element to
apply the change in the visual
state

Patent Application Publication US 2014/0375657 A1

900 ——\

Dec. 25,2014 Sheet 9 of 9

Platform 922

(Resources 924)

N

N
AN
AN

rd

Ve
e
7

Cloud
920

7

Computing Device 902

Processing
System 904

Computer-readable

Hardware
Elements 910

|

Media 906
[Memory/

Storage 212

\,

|

’

Input/Qutput
Interfaces 908

[Process Manager
Module 110

|

Graphics Module
112

J
]

-

Computer 91

Folder

N

Television

US 2014/0375657 Al

SYNCHRONIZATION POINTS FOR STATE
INFORMATION

BACKGROUND

[0001] Today’s computing devices have an ever-increasing
amount of processing power. For example, a typical device
has a central processing unit (CPU) with multiple processing
cores that can each perform data processing. Further, the
number of cores available on individual processors continues
to increase. With the prevalence of multi-core processors
comes the ability to perform multiple processing tasks on a
CPU in parallel. For example, multiple processing threads
that each handles a particular processing task can execute at
the same time on respective cores of a processor. Thus, the
speed with which multiple tasks can be completed is
increased over previous single-core processors.

[0002] While available processing power has increased,
many computing processes still utilize a serial processing
approach for scheduling and/or managing processing tasks.
For example, some applications are not configured to paral-
lelize certain processing tasks, and thus do not leverage the
parallel processing capabilities of multi-core processors. By
not parallelizing processing tasks, these processes do not
receive the performance benefits that result from parallel
processing.

SUMMARY

[0003] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
[0004] Techniques for synchronization points for state
information are described. In at least some embodiments,
synchronization points are employed to propagate state infor-
mation among different processing threads. A synchroniza-
tion point, for example, can be employed to propagate state
information among different independently-executing
threads. Accordingly, in at least some embodiments, synchro-
nization points serve as inter-thread communications among
different independently-executing threads.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is described with reference
to the accompanying figures. In the figures, the left-most
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same ref-
erence numbers in different instances in the description and
the figures may indicate similar or identical items.

[0006] FIG. 1 is an illustration of an environment in an
example implementation that is operable to employ tech-
niques discussed herein.

[0007] FIG. 2 illustrates an example implementation sce-
nario in accordance with one or more embodiments.

[0008] FIG. 3 illustrates an example implementation sce-
nario in accordance with one or more embodiments.

[0009] FIG. 4 illustrates an example implementation sce-
nario in accordance with one or more embodiments.

[0010] FIG. 5 illustrates an example implementation sce-
nario in accordance with one or more embodiments.

[0011] FIG. 6 illustrates an example implementation sce-
nario in accordance with one or more embodiments.

Dec. 25,2014

[0012] FIG. 7 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
[0013] FIG. 8 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
[0014] FIG. 9illustrates an example system and computing
device as described with reference to FIG. 1, which are con-
figured to implement embodiments of techniques described
herein.

DETAILED DESCRIPTION

Overview

[0015] Techniques for synchronization points for state
information are described. In at least some embodiments,
synchronization points are employed to propagate state infor-
mation among different processing threads. A synchroniza-
tion point, for example, can be employed to propagate state
information among different independently executing
threads.

[0016] For instance, consider a scenario where a web
browser displays a webpage. Techniques discussed herein
can utilize a first thread to perform various processing for the
webpage, such as webpage formatting tasks, layout tasks,
input processing tasks, and so forth. A second independently-
running thread can be employed to perform rendering tasks
for the webpage, such as generating pixel data for the
webpage and causing the pixel data to be displayed.

[0017] Based on processing of visual attributes of the
webpage, the first thread can emit a synchronization point that
includes visual state information for the webpage. The visual
state information, for example, can include changes to a
visual state of the webpage, such as movement of graphical
elements of the webpage, resizing and/or recoloring of
graphical elements, and so forth. After emitting the synchro-
nization point, the first thread may continue performing other
processing, such as generating additional synchronization
points.

[0018] Further to the example scenario, the second thread
can retrieve and process the synchronization point emitted by
the first thread, and render the webpage based on the state
information from the synchronization point. Thus, the first
thread is not dependent on the second thread processing the
synchronization point, and may perform various other types
of processing while the second thread is processing and/or
rendering based on the synchronization point.

[0019] Accordingly, in at least some embodiments, syn-
chronization points serve as inter-thread communications
that enable state information to be propagated among differ-
ent independently-executing threads.

[0020] In the following discussion, an example environ-
ment is first described that is operable to employ techniques
described herein. Next, a section entitled “Example Imple-
mentation Scenarios” describes some example implementa-
tion scenarios in accordance with one or more embodiments.
Following this, a section entitled “Example Procedures”
describes some example methods in accordance with one or
more embodiments. Finally, a section entitled “Example Sys-
tem and Device” describes an example system and device that
are operable to employ techniques discussed herein in accor-
dance with one or more embodiments.

[0021] Having presented an overview of example imple-
mentations in accordance with one or more embodiments,
consider now an example environment in which example
implementations may by employed.

US 2014/0375657 Al

Example Environment

[0022] FIG.1 is anillustration of an environment 100 in an
example implementation that is operable to employ tech-
niques for synchronization points for state information
described herein. The illustrated environment 100 includes a
computing device 102 that may be configured in a variety of
ways. For example, the computing device 102 may be con-
figured as a traditional computer (e.g., a desktop personal
computer, laptop computer, and so on), a mobile station, an
entertainment appliance, a set-top box communicatively
coupled to a television, a wireless phone, a netbook, a game
console, a handheld device (e.g., a tablet), and so forth as
further described in relation to FIG. 9.

[0023] Computing device 102 includes a processor 104,
which is representative of functionality to perform various
types of data processing for the computing device 102. For
example, the processor 104 can represent a central processing
unit (CPU) of the computing device 102. The processor 104
includes multiple processor cores that are capable of indi-
vidually performing processing tasks. Thus, the processor
104 is configured to perform parallel processing, such as
executing multiple processing threads simultaneously. Fur-
ther examples of implementations of the processor 104 are
discussed below with reference to FIG. 9.

[0024] The computing device 102 further includes applica-
tions 106, which are representative of functionalities to per-
form various tasks via the computing device 102. Examples
of'the applications 106 include a word processor application,
an email application, a content editing application, a gaming
application, and so on.

[0025] The applications 106 include a web platform appli-
cation 108, which is representative of an application that
operates in connection with web content. The web platform
application 108, for example, can include and make use of
many different types of technologies such as, by way of
example and not limitation, uniform resource locators
(URLs), Hypertext Transfer Protocol (HTTP), Representa-
tional State Transfer (REST), HyperText Markup Language
(HTML), Cascading Style Sheets (CSS), JavaScript, Docu-
ment Object Model (DOM), as well as other technologies.
The web platform application 108 can also work with a vari-
ety of data formats such as Extensible Application Markup
Language (XAML), Extensible Markup Language (XML),
JavaScript Object Notation (JSON), and the like. Examples of
the web platform application 108 include a web browser, a
web application (e.g., “web app”), and so on.

[0026] Furtherillustrated is a process manager module 110,
which is representative of functionality to manage various
aspects of processing tasks for the computing device 102. A
graphics module 112 is also included, which is representative
of functionality to perform various graphics-related tasks for
the computing device 102. For instance, the graphics module
112 can perform graphics processing, rendering tasks, and so
forth. The graphics module 112, for example, can represent a
rendering engine for the applications 106, such as the web
platform application 108. In at least some embodiments, the
process manager module 110 and/or the graphics module 112
can be leveraged to implement techniques for synchroniza-
tion points for state information discussed herein.

[0027] While the process manager module 110 and the
graphics module 112 are illustrated as separate from the
applications 106, this is not intended to be limiting. The
process manager module 110 and/or the graphics module
112, for example, can be implemented as a part and/or exten-

Dec. 25,2014

sion of the applications 106 such that their respective func-
tionalities can be leveraged by the applications 106. Alterna-
tively or additionally, the process manager module 110 and/or
the graphics module 112 can be implemented as part of an
operating system of the computing device 102. Further opera-
tional aspects of the process manager module 110 and the
graphics module 112 are discussed below.

[0028] The computing device 102 includes a display device
114, which is configured to output graphics for the computing
device 102. Displayed on the display device 114 is a graphical
user interface (GUI) 116, which is representative of a GUI
associated with one of the applications 106. The GUI 116, for
example, can include web content presented via the web
platform application 108. For instance, the GUI 116 can
represent a web document, such as a webpage. According to
one or more embodiments, techniques for synchronization
points for state information discussed herein can be employed
to perform various processing tasks related to the GUI 116,
such as layout processing, input processing, graphics render-
ing, and so forth.

[0029] Having described an example environment in which
the techniques described herein may operate, consider now
some example implementation scenarios in accordance with
one or more embodiments.

Example Implementation Scenarios

[0030] The following discussion describes some example
implementation scenarios for techniques for synchronization
points for state information described herein. The example
implementation scenarios may be implemented in the envi-
ronment 100 of FIG. 1, the system 900 of FIG. 9, and/or any
other suitable environment. The scenarios, for example, can
represent functionality of the process manager module 110
and/or the graphics module 112. For instance, the processing
threads discussed in the different scenarios can be generated
and/or maintained by the process manager module 110 and/or
the graphics module 112.

[0031] FIG. 2 illustrates an example implementation sce-
nario 200 in accordance with one or more embodiments. The
scenario 200 includes a GUI 202, which is representative of
various graphical elements that can be displayed. The GUI
202, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 202 includes a visual element 202a.

[0032] The scenario 200 further includes a primary thread
204 and a render thread 206, which are representative of
threads that are employed to perform various processing tasks
as part of generating, managing, and rendering the GUI 202.

[0033] Generally, the primary thread 204 represents a pro-
cessing thread that performs various types of management
tasks for the GUI 202. Examples of management tasks
include generating the GUI 202, such as for one of the appli-
cations 106. Other examples of management tasks include
executing script (e.g., JScript) for the GUI 202, GUI format-
ting tasks, GUI layout tasks, DOM manipulations, and so
forth. The render thread 206 represents a processing thread
that performs rendering operations, such as painting pixels of
the GUI 202 to a display. For example, changes to visual
aspects of the GUI 202 generated by the primary thread 204
can be rendered for display by the render thread 206. Accord-
ing to various embodiments, the primary thread 204 can pass
various graphics information to the render thread 206 for
rendering and display.

US 2014/0375657 Al

[0034] Proceeding to the center portion of the scenario 200,
a change to a visual aspect of the GUI 202 causes the primary
thread 204 to generate graphics data 208. The graphics data
208, for example, can describe a change to a visual aspect of
the GUI 202. Examples of such changes include color
changes, visual element resizing, animation of a visual ele-
ment, repositioning of a visual element, and so forth. The
change, for instance, can occur in response to user interaction
with the GUI 202 via various types of user input.

[0035] In response to generating the graphics data 208, a
paintable synchronization point (PSP) 210 is generated. Gen-
erally, the PSP 210 represents a set of information that can be
used by the render thread 206 to render portions of the GUI
202. The PSP 210, for example, can include and/or be based
on the graphics data 208. Alternatively or additionally, the
PSP 210 can include information sufficient to enable the
render thread 206 to retrieve the graphics data 208, such as a
memory address and/or addresses at which the graphics data
208 resides.

[0036] Inatleast some embodiments, the PSP 210 includes
various types of state information for the GUI 202. For
example, the PSP 210 can include state change information,
such as an indication of visual attributes of the GUI 202 that
have changed since a previous PSP was generated and/or a
previous render operation was performed by the render thread
206. Thus, according to one or more embodiments, the PSP
210 may not include data for a complete rendering of the GUI
202, but may simply indicate state change information suffi-
cient to update the GUI 202 to a new visual state. This is not
intended to be limiting, however, and in at least some embodi-
ments a PSP can represent a complete rendering of a GUI. For
instance, embodiments may utilize combinations of partial
and complete PSP information to propagate state informa-
tion.

[0037] After emitting the PSP 210, the primary thread 204
may continue processing management tasks for the GUI 202,
e.g., without waiting for the render thread 206 to retrieve
and/or process the PSP 210.

[0038] Proceeding to the lower portion of the scenario 200,
the render thread 206 processes the PSP 210 to generate a
state change 212. Generally, the state change 212 is a re-
render of a portion of the GUI 202 based on state information
from the PSP 210. Thus, the state change 212 is applied to the
GUI 202 (e.g., as part of a render and/or draw operation) to
synchronize a visual state of the GUI 202 with the visual state
indicated by the PSP 210. In this particular example, appli-
cation of the state change 212 causes a repositioning of the
visual element 2024, e.g., a translational movement of the
visual element 2024 within the GUI 202.

[0039] Thus, the scenario 200 illustrates that changes to a
visual state of a graphical element generated by a first thread
can be encapsulated via a PSP that can be consumed by a
second thread to apply the changes. Further, the first thread
may continue performing other processing tasks after the PSP
has been emitted, e.g., without waiting for the PSP to be
processed. This provides for efficient usage of processor
resources, and increases the overall quality of the user expe-
rience by providing a more seamless visual experience. Thus,
in at least some embodiments, a PSP provides a mechanism
by which state information can be transferred between inde-
pendent threads.

Dec. 25,2014

[0040] Inatleast some embodiments, techniques discussed
herein enable multiple PSPs to be generated and processed
asynchronously. For instance, consider the following
example scenario.

[0041] FIG. 3 illustrates an example implementation sce-
nario 300 in accordance with one or more embodiments. The
scenario 300 includes a GUI 302, which is representative of
various graphical elements that can be displayed. The GUI
302, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 302 includes a visual element 302a.

[0042] The scenario 300 further includes a primary thread
304 and a render thread 306 for the GUI 302. Example details
concerning a primary thread and a render thread are discussed
above. Based on visual state changes to the GUI 302, a PSP
queue 308 is generated that includes multiple PSPs. For
instance, the PSP queue 308 includes a PSP 310, a PSP 312,
and a PSP 314 that are generated by the primary thread 304.
The PSPs can be generated based on various events, such as
user interaction with the GUI 302, events generated by pro-
cesses, and so forth. As referenced above, the PSPs 310, 312,
314 correspond to changes in a visual state of the GUI 302.
For instance, the PSPs 310, 312, 314 can correspond to move-
ment of the visual element 3024 in the GUI 302.

[0043] Inatleast some embodiments, PSPs can accumulate
in the PSP queue 308 when the PSPs are generated by the
primary thread 304 faster than the render thread 306 can
process and apply the PSPs. For instance, the render thread
306 may be performing a complex and time-consuming ren-
der operation based on a recently consumed PSP such that the
primary thread 304 generates additional PSPs before the ren-
der thread 306 completes the complex render operation. Thus,
PSPs can be queued in a temporally sequential order, with an
older PSP placed before a newer one in the queue.

[0044] Proceeding to the lower portion of the scenario 300,
the render thread 306 retrieves the PSP 310 from the PSP
queue 308. The render thread 306 processes the PSP 310 to
generate a state change 310qa. The state change 310a corre-
sponds to a change in a visual state of the GUI 302. For
example, the state change 310a represents a difference
between a previous visual state and a current visual state of
the GUI 302. Accordingly, in at least some embodiments, the
PSP 310 and thus the state change 310a do not represent a
complete re-rendering of the GUI 302, but include data that
can be applied to update the visual state of a portion of the
GUI 302.

[0045] The render thread 306 applies the state change 310a
to the GUI 302, such as by re-rendering a portion of the GUIL.
For instance, the render thread 306 can change a visual aspect
of the visual element 3024, such as recoloring the visual
element, resizing the visual element, and so forth, based on
data from the state change 310« generated from the PSP 310.
Alternatively or additionally, applying the state change 310a
can involve movement of the visual element 3024, such as
translation, rotation, and so forth.

[0046] In response to the render thread 306 retrieving and
processing the PSP 310, the PSPs 312, 314 move up in the
PSP queue 308. Thus, after the render thread 306 is finished
processing and applying the PSP 310, the render thread 306
can retrieve and process the PSP 312. In at least some embodi-
ments, PSPs are consumed by the render thread 306 from the
PSP queue 308 in an order in which they were generated by
the primary thread 304 and placed in the queue. Processing of

US 2014/0375657 Al

PSPs from the PSP queue 308 can continue until no further
PSPs remain to be retrieved in the PSP queue 308, and/or the
GUI 302 is closed.

[0047] Thus, the primary thread 304 can generate PSPs that
represent multiple visual state changes to the GUI 302, and
can place them in the PSP queue 308 for subsequent process-
ing by the render thread 306. This enables the primary thread
304 to be available to perform other processing tasks without
waiting for the render thread 306 to consume PSPs from the
PSP queue 308. Accordingly, the primary thread 304 and the
render thread 306 can run independently, with interaction
between the threads occurring via PSPs.

[0048] Inatleast some embodiments, techniques discussed
herein enable user input to be efficiently processed via a
render thread. For instance, consider the following example
scenario.

[0049] FIG. 4 illustrates an example implementation sce-
nario 400 in accordance with one or more embodiments. The
scenario 400 includes a GUI 402, which is representative of
various graphical elements that can be displayed. The GUI
402, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 402 includes a visual element 402a.

[0050] Further illustrated are a primary thread 404 and a
render thread 406 for the GUI 402. Details concerning pri-
mary threads and render threads are discussed above.

[0051] Proceeding to the center portion of the scenario 400,
a user provides input 408 to the GUI 402. Examples of the
input 408 include touch input, mouse input, keyboard input,
voice input, and so forth. In at least some embodiments, the
input 408 represents input data received from an input func-
tionality, such as an input device driver.

[0052] In response to receiving the input 408, the primary
thread 404 processes the input 408 to generate a PSP 410. The
PSP 410 represents changes to the GUI 402 based on the input
408. The PSP 410, for example, can indicate various manipu-
lations of the GUI 402. For instance, the PSP 410 can indicate
that the GUI 402 is to be scrolled in a display area, a zoom-in
or a zoom-out on a portion of the GUI 402, a change to the
visual element 4024, and so forth.

[0053] Continuing to the lower portion of the scenario 400,
the render thread 406 retrieves and processes the PSP 410 to
generate a state change 410a for the GUI 402. The state
change 410aq indicates a re-render of the GUI 402 based on the
PSP 410, e.g., based on the input 408. Thus, the render thread
406 renders the GUI 402 based on the input 408. As refer-
enced above, this can include scrolling the GUI 402, zooming
on a portion of the GUI 402, panning the GUI 402, and/or
other manipulations of portions of the GUI 402.

[0054] Thus, once the render thread 406 has obtained data
describing a user input (e.g., from a PSP and/or otherwise),
the render thread 406 can apply the input to the GUI 402
independent of interaction with the primary thread 404. This
enables the primary thread 404 to perform other processing
while the input is being applied by the render thread 406, and
enables the render thread 406 to actively render the GUI 402
based on the input 408 even if the primary thread 404 is busy
with another task.

[0055] According to various embodiments, data that
describes a visual region of a display (e.g., a GUI) can be
represented as a tree structure, or “display tree.” Generally, a
display tree is a data structure that represents various visual
elements of a region of a display. A display tree, for instance,
includes different nodes that correspond to respective visual

Dec. 25,2014

elements of a GUI. As described below, interactions between
threads can be characterized via manipulations and versions
of a display tree. For instance, consider the following
example scenarios.

[0056] FIG. 5 illustrates an example implementation sce-
nario 500 in accordance with one or more embodiments. The
scenario 500 includes a GUI 502, which is representative of
various graphical elements that can be displayed. The GUI
502, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 502 includes various visual elements, such as win-
dows, graphics, text, images, and so forth.

[0057] The scenario 500 further includes a primary thread
504 and a render thread 506 for the GUI 502. Example details
concerning primary threads and render threads are discussed
above. The primary thread 504 is associated with a display
tree 508, which is a data representation of the GUI 502. The
display tree 508, for example, includes nodes that represent
various visual elements of the GUI 502. For instance, the
display tree 508 includes a parent node that represents the
primary window of the GUI 502, as well as multiple child
nodes that each represents a respective visual element of the
GUI 502.

[0058] According to one or more embodiments, the display
tree 508 is utilized by the primary thread 504 to perform
various processing for the GUI 502. For instance, as various
events occur that indicate modifications to visual elements of
the GUI 502, the primary thread 504 modifies the display tree
508 accordingly. Thus, the display tree 508 is “owned” by the
primary thread 504, and is updateable by the primary thread
504 to reflect various changes that are to be propagated to the
GUI 502.

[0059] Proceeding to the center portion ofthe scenario 500,
a PSP 510 is generated by the primary thread 504 according to
various techniques discussed herein. The PSP 510 can be
emitted by the primary thread 504, for example, in response to
various events that change visual aspects of the GUI 502. The
PSP 510 is associated with a display tree 512.

[0060] According to one or more embodiments, the display
tree 512 represents a snapshot (e.g., copy) of the display tree
508 captured at a particular moment. For example, the pri-
mary thread 504 can modify one or more nodes of the display
tree 508 in response to various events. The primary thread 504
can then generate a copy of the display tree 508 as the display
tree 512. The primary thread 504 emits the PSP 510 that
includes and/or is linked to the display tree 512. Thus, the
display tree 512 corresponds to a state of the display tree 508
at a particular instance in time.

[0061] Afterthe primary thread 504 emits PSP 510 with the
display tree 512, the primary thread 504 can proceed with
performing other tasks. For instance, the primary thread can
make further modifications to the display tree 508 without
affecting the display tree 512.

[0062] The scenario 500 further includes a display tree 514
maintained by the render thread 506. Generally, the display
tree 514 is utilized by the render thread 506 for rendering
visual aspects of the GUI 502. For instance, the render thread
506 reads from the display tree 514 to draw to the GUI 502.
According to one or more embodiments, the display tree 514
was generated and/or modified based on a display tree from a
previous PSP, e.g., a PSP received prior to the PSP 510. Thus,
the display tree 514 is “owned” by the render thread 506. For

US 2014/0375657 Al

example, in at least some embodiments the display tree 514
cannot be directly accessed or modified by the primary thread
504.

[0063] Proceeding to the lower portion of the scenario 500,
the render thread 506 retrieves the PSP 510 and modifies the
display tree 514 based on the display tree 512 associated with
the PSP 510. The display tree 512, for instance, can indicate
changes to one or more nodes of the display tree 514. Thus,
the changes can be propagated from the display tree 512 to the
display tree 514. Once the state of the display tree 514 is
synchronized with the state of the display tree 512, the render
thread 506 can proceed with rendering the GUI 502 based on
the updated display tree 514.

[0064] Thus, visual processing applied by the primary
thread 504 to the display tree 508 is propagated via the display
tree 512 to the render thread 506, which then applies the
visual processing to its own display tree 514.

[0065] Further illustrated in the lower portion of the sce-
nario 500 is that the primary thread 504 emits a PSP 516
which includes a display tree 518. As with the display tree
512, the display tree 518 is a copy of the display tree 508
generated by the primary thread 504. The display tree 518, for
example, includes changes to the state of the display tree 508
that have occurred subsequent to the display tree 512 having
been generated.

[0066] When the render thread 506 is finished drawing to
the GUI 502 from the current state of the display tree 514, the
render thread 506 can retrieve the PSP 516 and can synchro-
nize the display tree 514 with the display tree 518. The render
thread 506 can then proceed with rendering the GUI 502
based on the updated display tree 514.

[0067] Thus, the scenario 500 illustrates that various states
of a display tree can be maintained for a display region. For
instance, with reference to the GUI 502, at least three states of
adisplay tree for the GUI 502 can be maintained. The primary
thread 504 maintains the display tree 508 to which it applies
various changes to the visual state of the GUI 502. To enable
changes to the visual state of the GUI 502 to be propagated to
the render thread 506 and displayed, the state of the display
tree 508 can be captured via an intermediate display tree that
can be persisted for consumption by the render thread 506.
For instance, the display trees 512,518 represent snapshots of
the display tree 508 captured at different states of the display
tree 508. Further, the render thread 506 maintains the display
tree 514 which it synchronizes to the intermediate display
trees and reads from for rendering to the GUI 502.

[0068] In at least some embodiments, PSPs can be
employed to propagate changes to a display tree without
requiring entire copies of a display tree to be generated. For
instance, consider the following example scenario.

[0069] FIG. 6 illustrates an example implementation sce-
nario 600 in accordance with one or more embodiments. The
scenario 600 includes a GUI 602, which is representative of
various graphical elements that can be displayed. The GUI
602, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 602 includes various visual elements, such as win-
dows, graphics, text, images, and so forth.

[0070] The scenario 600 further includes a primary thread
604 and a render thread 606 for the GUI 602. Example details
concerning primary threads and render threads are discussed
above. The primary thread 604 is associated with a display
tree 608, which is a data representation of the GUI 602.

Dec. 25,2014

[0071] Proceeding to the center portion ofthe scenario 600,
aPSP 610 is generated by the primary thread 604 according to
various techniques discussed herein. The PSP 610 can be
emitted by the primary thread 604, for example, in response to
various events that change visual aspects of the GUI 602.
[0072] The PSP 610 includes change data 612, which rep-
resents changes to the display tree 608 that have occurred. For
example, the primary thread 604 can modify one or more
nodes of the display tree 608 in response to various events.
Other types of changes may also be made, such as adding
nodes, deleting nodes, rearranging nodes, and so forth. The
primary thread 604 can then generate the change data 612,
which specifies the changes that are made to the display tree
608. The primary thread 604 emits the PSP 610 that includes
and/or is linked to the change data 612. According to various
embodiments, the change data 612 corresponds to changes to
the display tree 608 that have occurred since a previous PSP
was emitted. Thus, the PSP 612 does not include an entire
copy of the display tree 608.

[0073] Afterthe primary thread 604 emits the PSP 610 with
the change data 612, the primary thread 604 can proceed with
performing other tasks. For instance, the primary thread can
make further modifications to the display tree 608 without
affecting the change data 612.

[0074] The scenario 600 further includes a display tree 614
maintained by the render thread 606. Generally, the display
tree 614 is utilized by the render thread 606 for rendering
visual aspects of the GUI 602. The display tree 614, for
instance, corresponds to a version of the display tree 608
generated based on a previous PSP.

[0075] Proceeding to the lower portion of the scenario 600,
the render thread 606 retrieves the PSP 610 and modifies the
display tree 614 based on the change data 612. Thus, the
changes indicated in the change data 612 can be applied to the
display tree 614. The render thread 606 can then proceed with
rendering the GUI 602 based on the updated display tree 614.
[0076] According to various embodiments, the PSP 610
persists until the render thread 606 is finished reading data
from and/or otherwise utilizing the PSP 610. For instance, the
PSP 610 represents a valid state of the display tree 608 that
remains valid and usable by the render thread 606 until the
render thread 606 releases the PSP 610, and/or moves on to
processing a subsequent PSP. In at least some embodiments,
after the render thread 606 is finished processing the PSP 610,
a memory address and/or addresses for the PSP 610 can be
released to be used for other purposes, e.g., a subsequent PSP.
[0077] Thus, visual processing applied by the primary
thread 604 to the display tree 608 is propagated via the change
data 612 to the render thread 606, which then applies the
visual processing to its own display tree 614.

[0078] Further illustrated in the lower portion of the sce-
nario 600 is that the primary thread 604 emits a PSP 616
which includes change data 618. The change data 618, for
example, indicates changes to the state of the display tree 608
that have occurred subsequent to the primary thread 604
emitting the PSP 610.

[0079] When the render thread 606 is finished drawing to
the GUI 602 from the current state of the display tree 614, the
render thread 606 can retrieve the PSP 616 and can synchro-
nize the display tree 614 based on the change data 618. The
render thread 606 can then proceed with rendering the GUI
602 based on the updated display tree 614.

[0080] Thus, the scenario 600 illustrates that PSPs can be
employed to share changes in a visual state of a GUI among

US 2014/0375657 Al

threads without generating multiple copies of a display tree
for the GUI. Further, the lifetime of a PSP can be managed to
enable a particular state of a display tree to be persisted for a
render thread, while a primary thread that generated the PSP
performs other processing.

[0081] While the scenarios presented above are discussed
with reference to rendering scenarios, this is not intended to
be limiting. For example, synchronization points can be used
to propagate state information between a variety of different
threads as part of a variety of different processes and/or tasks.
[0082] In at least some embodiments, a GUI may include
certain elements which cannot or must not be rendered sepa-
rately on a different thread, e.g., for reasons of economy or
correctness. Therefore, such embodiments can choose to pro-
cess a PSP on a primary thread until they again deem it
appropriate to use a render thread for improved performance.
Further, such embodiments may choose to defer creation of a
render thread, pause it, or shut it down depending on avail-
ability of resources.

[0083] Having discussed some example implementation
scenarios, consider now a discussion of some example pro-
cedures in accordance with one or more embodiments.

Example Procedures

[0084] The following discussion describes some example
procedures for synchronization points for state information in
accordance with one or more embodiments. The example
procedures may be employed in the environment 100 of FIG.
1, the system 900 of FIG. 9, and/or any other suitable envi-
ronment.

[0085] FIG. 7 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. The
method is discussed with reference to steps associated with a
first thread and steps associated with a second thread. The first
thread and the second thread can be associated with a variety
of different processes and/or tasks.

[0086] Step 700 determines a state change to be propagated
to another thread. As discussed above, the state change can
relate to a change in a visual aspect of a graphical element,
such as a portion of the GUI. A variety of other types of state
changes, however, can be propagated according to various
embodiments. A state change, for example, can relate to a
variety of different processes and/or resources associated
with a computing device.

[0087] Step 702 emits a synchronization point that includes
an indication of the state change. With reference to a change
to visual aspect, for example, the synchronization point can
include and/or identify data that indicates how the visual
aspect is to be changed. For instance, the synchronization
point can include one or more portions of the display tree for
a graphical element that define how the graphical element is
to be rendered and displayed. Alternatively and/or addition-
ally, the synchronization point can identify where data for the
state change can be found, such as a memory address.
[0088] In at least some embodiments, emitting a synchro-
nization point can include placing the synchronization point
in a synchronization point queue. For instance, if one or more
other synchronization points remain to be processed, the syn-
chronization point can be placed behind the other synchroni-
zation points in a synchronization point queue such that the
different synchronization points can be processed in order.
[0089] Step 704 proceeds with performing other tasks after
emitting the synchronization point. The first thread, for
example, can continue executing other tasks, such as gener-

Dec. 25,2014

ating additional synchronization points. Thus, the first thread
need not wait until the synchronization point is consumed by
the second thread to continue processing.

[0090] Step 706 retrieves the synchronization point. The
second thread, for example, can retrieve the synchronization
point from a synchronization point queue.

[0091] Step 708 processes the synchronization point to
determine the state change. The state change, for example,
can relate to a change in a visual state of a graphical element,
such as a GUI. As referenced above, however, embodiments
are not limited to state changes in visual elements, and can
refer to state changes in a variety of different processes,
resources, and so on.

[0092] Step 710 applies the state change. The state change,
for example, can be applied to a process and/or resource
associated with the synchronization point. For instance, the
state change can be applied to change the visual appearance of
a graphical element.

[0093] FIG. 8 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. The
method is discussed with reference to steps associated with a
primary thread, and steps associated with a render thread.
Example embodiments and functionalities of a primary
thread and a render thread are discussed above.

[0094] Step 800 generates a change to a visual state of a
graphical element. For instance, the primary thread can per-
form various types processing that causes a change to a
graphical element, such as a visual change to a GUL As
detailed above, the primary thread can make modifications to
a display tree maintained by the primary thread.

[0095] Step 802 emits a synchronization point that includes
an indication of the change to the visual state. The synchro-
nization point, for example, can include data that character-
izes the change, and/or can identify where the data may be
retrieved. For instance, the synchronization point can include
and/or identify a version of a display tree maintained by the
primary thread.

[0096] Step 804 proceeds with performing other tasks after
emitting the synchronization point. The primary thread, for
example, need not wait for the render thread to consume the
synchronization point before proceeding with other process-
ing tasks.

[0097] Step 806 retrieves the synchronization point. The
render thread, for instance, can retrieve the synchronization
point from a synchronization point queue.

[0098] Step 808 processes the synchronization point to
determine the change in the visual state of the graphical
element. For instance, a display tree included with and/or
identified by the synchronization point can be inspected.

[0099] Step 810 renders the graphical element to apply the
change in the visual state. The render thread, for example, can
apply the changes to the visual state to a display tree main-
tained by the render thread. The render thread can then render
the graphical element based on the updated display tree.

[0100] While embodiments are discussed herein with ref-
erence to interaction between two different threads, this is
presented for purpose of example only. For instance, in at
least some embodiments multiple different threads can pro-
duce synchronization points and can emit the synchronization
points for processing by a particular thread. In a GUI render-
ing scenario, for example, multiple diftferent threads can pro-
duce synchronization points that specify changes to visual

US 2014/0375657 Al

aspects of the GUI. The synchronization points can be emit-
ted by the different threads for consumption by a rendering
thread.

[0101] Having discussed some example procedures, con-
sider now a discussion of an example system and device in
accordance with one or more embodiments.

Example System and Device

[0102] FIG. 9 illustrates an example system generally at
900 that includes an example computing device 902 that is
representative of one or more computing systems and/or
devices that may implement various techniques described
herein. For example, the computing device 102 discussed
above with reference to FIG. 1 can be embodied as the com-
puting device 902. The computing device 902 may be, for
example, a server of a service provider, a device associated
with the client (e.g., a client device), an on-chip system,
and/or any other suitable computing device or computing
system.

[0103] The example computing device 902 as illustrated
includes a processing system 904, one or more computer-
readable media 906, and one or more Input/Output (I/O)
Interfaces 908 that are communicatively coupled, one to
another. Although not shown, the computing device 902 may
further include a system bus or other data and command
transfer system that couples the various components, one to
another. A system bus can include any one or combination of
different bus structures, such as a memory bus or memory
controller, a peripheral bus, a universal serial bus, and/or a
processor or local bus that utilizes any of a variety of bus
architectures. A variety of other examples are also contem-
plated, such as control and data lines.

[0104] Theprocessing system 904 is representative of func-
tionality to perform one or more operations using hardware.
Accordingly, the processing system 904 is illustrated as
including hardware element 910 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 910 are not limited
by the materials from which they are formed or the processing
mechanisms employed therein. For example, processors may
be comprised of semiconductor(s) and/or transistors (e.g.,
electronic integrated circuits (ICs)). In such a context, pro-
cessor-executable instructions may be electronically-execut-
able instructions.

[0105] The computer-readable media 906 is illustrated as
including memory/storage 912. The memory/storage 912
represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage 912
may include volatile media (such as random access memory
(RAM)) and/or nonvolatile media (such as read only memory
(ROM), Flash memory, optical disks, magnetic disks, and so
forth). The memory/storage 912 may include fixed media
(e.g., RAM, ROM, a fixed hard drive, and so on) as well as
removable media (e.g., Flash memory, a removable hard
drive, an optical disc, and so forth). The computer-readable
media 906 may be configured in a variety of other ways as
further described below.

[0106] Input/output interface(s) 908 are representative of
functionality to allow a user to enter commands and informa-
tion to computing device 902, and also allow information to
be presented to the user and/or other components or devices
using various input/output devices. Examples of input

Dec. 25,2014

devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone (e.g., for voice recognition and/or
spoken input), a scanner, touch functionality (e.g., capacitive
or other sensors that are configured to detect physical touch),
a camera (e.g., which may employ visible or non-visible
wavelengths such as infrared frequencies to detect movement
that does not involve touch as gestures), and so forth.
Examples of output devices include a display device (e.g., a
monitor or projector), speakers, a printer, a network card,
tactile-response device, and so forth. Thus, the computing
device 902 may be configured in a variety of ways as further
described below to support user interaction.

[0107] Various techniques may be described herein in the
general context of software, hardware elements, or program
modules. Generally, such modules include routines, pro-
grams, objects, elements, components, data structures, and so
forth that perform particular tasks or implement particular
abstract data types. The terms “module,” “functionality,” and
“component” as used herein generally represent software,
firmware, hardware, or a combination thereof. The features of
the techniques described herein are platform-independent,
meaning that the techniques may be implemented on a variety
of commercial computing platforms having a variety of pro-
Cessors.

[0108] An implementation of the described modules and
techniques may be stored on or transmitted across some form
of computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 902. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “computer-readable signal media.”
[0109] “Computer-readable storage media” may refer to
media and/or devices that enable persistent storage of infor-
mation in contrast to mere signal transmission, carrier waves,
or signals per se. Thus, computer-readable storage media do
not include signals per se. The computer-readable storage
media includes hardware such as volatile and non-volatile,
removable and non-removable media and/or storage devices
implemented in a method or technology suitable for storage
of information such as computer readable instructions, data
structures, program modules, logic elements/circuits, or other
data. Examples of computer-readable storage media may
include, but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, hard disks, mag-
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other storage device, tangible
media, or article of manufacture suitable to store the desired
information and which may be accessed by a computer.
[0110] “Computer-readable signal media” may refer to a
signal-bearing medium that is configured to transmit instruc-
tions to the hardware of the computing device 902, such as via
a network. Signal media typically may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier waves,
data signals, or other transport mechanism. Signal media also
include any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), infrared, and
other wireless media.

US 2014/0375657 Al

[0111] As previously described, hardware elements 910
and computer-readable media 906 are representative of
instructions, modules, programmable device logic and/or
fixed device logic implemented in a hardware form that may
be employed in some embodiments to implement at least
some aspects of the techniques described herein. Hardware
elements may include components of an integrated circuit or
on-chip system, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a complex
programmable logic device (CPLD), and other implementa-
tions in silicon or other hardware devices. In this context, a
hardware element may operate as a processing device that
performs program tasks defined by instructions, modules,
and/or logic embodied by the hardware element as well as a
hardware device utilized to store instructions for execution,
e.g., the computer-readable storage media described previ-
ously.

[0112] Combinations of the foregoing may also be
employed to implement various techniques and modules
described herein. Accordingly, software, hardware, or pro-
gram modules and other program modules may be imple-
mented as one or more instructions and/or logic embodied on
some form of computer-readable storage media and/or by one
or more hardware elements 910. The computing device 902
may be configured to implement particular instructions and/
or functions corresponding to the software and/or hardware
modules. Accordingly, implementation of modules that are
executable by the computing device 902 as software may be
achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
910 of the processing system. The instructions and/or func-
tions may be executable/operable by one or more articles of
manufacture (for example, one or more computing devices
902 and/or processing systems 904) to implement techniques,
modules, and examples described herein.

[0113] As further illustrated in FIG. 9, the example system
900 enables ubiquitous environments for a seamless user
experience when running applications on a personal com-
puter (PC), a television device, and/or a mobile device. Ser-
vices and applications run substantially similar in all three
environments for a common user experience when transition-
ing from one device to the next while utilizing an application,
playing a video game, watching a video, and so on.

[0114] In the example system 900, multiple devices are
interconnected through a central computing device. The cen-
tral computing device may be local to the multiple devices or
may be located remotely from the multiple devices. In one
embodiment, the central computing device may be a cloud of
one or more server computers that are connected to the mul-
tiple devices through a network, the Internet, or other data
communication link.

[0115] In one embodiment, this interconnection architec-
ture enables functionality to be delivered across multiple
devices to provide a common and seamless experience to a
user of the multiple devices. Each of the multiple devices may
have different physical requirements and capabilities, and the
central computing device uses a platform to enable the deliv-
ery of an experience to the device that is both tailored to the
device and yet common to all devices. In one embodiment, a
class of target devices is created and experiences are tailored
to the generic class of devices. A class of devices may be
defined by physical features, types of usage, or other common
characteristics of the devices.

Dec. 25,2014

[0116] In various implementations, the computing device
902 may assume a variety of different configurations, such as
for computer 914, mobile 916, and television 918 uses. Each
of these configurations includes devices that may have gen-
erally different constructs and capabilities, and thus the com-
puting device 902 may be configured according to one or
more of the different device classes. For instance, the com-
puting device 902 may be implemented as the computer 914
class of a device that includes a personal computer, desktop
computer, a multi-screen computer, laptop computer, net-
book, and so on.

[0117] The computing device 902 may also be imple-
mented as the mobile 916 class of device that includes mobile
devices, such as a mobile phone, portable music player, por-
table gaming device, a tablet computer, a multi-screen com-
puter, and so on. The computing device 902 may also be
implemented as the television 918 class of device that
includes devices having or connected to generally larger
screens in casual viewing environments. These devices
include televisions, set-top boxes, gaming consoles, and so
on.

[0118] The techniques described herein may be supported
by these various configurations of the computing device 902
and are not limited to the specific examples of the techniques
described herein. For example, functionalities discussed with
reference to the process manager module 110 and/or the
graphics module 112 may be implemented all or in part
through use of a distributed system, such as over a “cloud”
920 via a platform 922 as described below.

[0119] The cloud 920 includes and/or is representative of a
platform 922 for resources 924. The platform 922 abstracts
underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 920. The resources 924 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 902. Resources 924 can also
include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

[0120] The platform 922 may abstract resources and func-
tions to connect the computing device 902 with other com-
puting devices. The platform 922 may also serve to abstract
scaling of resources to provide a corresponding level of scale
to encountered demand for the resources 924 that are imple-
mented via the platform 922. Accordingly, in an intercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
900. For example, the functionality may be implemented in
part on the computing device 902 as well as via the platform
922 that abstracts the functionality of the cloud 920.

[0121] Discussed herein are a number of methods that may
be implemented to perform techniques discussed herein.
Aspects of the methods may be implemented in hardware,
firmware, or software, or a combination thereof The methods
are shown as a set of steps that specify operations performed
by one or more devices and are not necessarily limited to the
orders shown for performing the operations by the respective
blocks. Further, an operation shown with respect to a particu-
lar method may be combined and/or interchanged with an
operation of a different method in accordance with one or
more implementations. Aspects of the methods can be imple-
mented via interaction between various entities discussed
above with reference to the environment 100.

US 2014/0375657 Al

CONCLUSION

[0122] Techniques for synchronization points for state
information are described. Although embodiments are
described in language specific to structural features and/or
methodological acts, it is to be understood that the embodi-
ments defined in the appended claims are not necessarily
limited to the specific features or acts described. Rather, the
specific features and acts are disclosed as example forms of
implementing the claimed embodiments.

What is claimed is:

1. A system comprising:

at least one processor; and

one or more computer-readable storage media including

instructions stored thereon that, responsive to execution

by the atleast one processor, cause the system to perform

operations including:

executing a first thread to generate a change to a visual
state of a graphical element, and to emit a synchroni-
zation point that includes an indication of the change
to the visual state and that persists in a valid state at
least until a second thread retrieves and processes the
synchronization point to update the visual state of the
graphical element; and

executing the second thread to process the synchroniza-
tion point to determine the change to the visual state,
and to render the graphical element to apply the
change to the visual state.

2. A system as recited in claim 1, wherein said executing
the first thread comprises executing the first thread via a first
processor core, and where said executing the second thread
comprises executing the second thread via a second processor
core.

3. A system as recited in claim 1, wherein the graphical
element comprises at least a portion of a web document
generated by a web platform application.

4. A system as recited in claim 1, wherein said executing
the first thread comprises adding the synchronization point to
a synchronization point queue, and wherein said executing
the second thread comprises retrieving the synchronization
point from the synchronization point queue prior to process-
ing the synchronization point.

5. A system as recited in claim 4, wherein said executing
the second thread comprises retrieving the synchronization
point from the synchronization point queue subsequent to
retrieving and processing one or more other synchronization
points from the synchronization point queue.

6. A system as recited in claim 4, wherein said executing
the second thread comprises retrieving and processing syn-
chronization points from the synchronization point queue in
an order in which the synchronization points are added to the
synchronization point queue.

7. A system as recited in claim 1, wherein the change to the
visual state is based on user input to the graphical element.

8. A system as recited in claim 1, wherein the operations
further include executing the first thread to perform further
processing after the synchronization point is emitted and
without waiting for the second thread to process the synchro-
nization point.

9. A system as recited in claim 1, wherein:

said executing the first thread comprises modifying a ver-

sion of a display tree maintained by the first thread for
the graphical element to reflect the change to the visual
state, and associating a copy of the modified version of
the display tree with the synchronization point; and

Dec. 25,2014

said executing the second thread comprises propagating
state information from the copy of the modified version
of the display tree to a version of the display tree main-
tained by the second thread, and rendering the graphical
element based on the version of the display tree main-
tained by the second thread.

10. One or more computer-readable storage media com-
prising instructions stored thereon that, responsive to execu-
tion by a computing device, cause the computing device to
perform operations comprising:

receiving input to a graphical user interface (GUI);

generating via a primary thread one or more changes to a

visual state of the GUI based on the user input, and
emitting a synchronization point that includes an indi-
cation of the one or more changes to the visual state of
the GUI and that remains in a valid state while the
primary thread performs other processing and at least
until a render thread updates the visual state of the GUI
based on the one or more changes; and

processing the synchronization point via the render thread

to determine the one or more changes to the visual state,
and rendering the GUI based on the one or more changes
to the visual state.

11. One or more computer-readable storage media as
recited in claim 10, wherein the input comprises touch input
from a user to perform one or more of scrolling or zooming of
at least one portion of the GUIL.

12. One or more computer-readable storage media as
recited in claim 10, wherein the primary thread is executed via
a first processor core, and wherein the render thread is
executed via a second processor core.

13. One or more computer-readable storage media as
recited in claim 10, wherein the GUI comprises a web docu-
ment.

14. One or more computer-readable storage media as
recited in claim 10, wherein said emitting comprises adding
the synchronization point to a synchronization point queue,
and wherein said processing comprises retrieving via the
render thread the synchronization point from the synchroni-
zation point queue.

15. One or more computer-readable storage media as
recited in claim 14, wherein the synchronization point queue
includes one or more other synchronization points, and
wherein the operations comprise processing via the render
thread synchronization points from the synchronization point
queue in an order in which the synchronization points are
added to the synchronization point queue.

16. One or more computer-readable storage media as
recited in claim 10, wherein:

said generating comprises modifying via the primary

thread a version of a display tree maintained by the
primary thread for the GUI to reflect the one or more
changes to the visual state, and associating a copy of the
modified version of the display tree with the synchroni-
zation point; and

said processing comprises propagating via the render

thread state information from the copy of the modified
version of the display tree to a version of the display tree
maintained by the render thread, and rendering the GUI
based on the version of the display tree maintained by
the render thread.

17. A computer-implemented method, comprising:

executing via a first processor core a first thread to generate

one or more changes to a visual state of a graphical user

US 2014/0375657 Al

interface (GUI), and to emit a synchronization point that
includes an indication of the one or more changes to the
visual state of the GUI represented as changes to a dis-
play tree for the GUI, the synchronization point remain-
ing in a valid state at least until another thread processes
the synchronization point; and

executing via a second processor core a second thread to
process the synchronization point to determine the one
or more changes to the visual state of the GUI, apply the
changes to the display tree to generate an updated dis-
play tree for the GUI, and to render the GUI based on the
updated display tree.

18. A method as described in claim 17, wherein the GUI
comprises a web document, and wherein the first thread and
the second thread are managed by a graphics module for a
web platform application that generates the web document.

Dec. 25,2014

19. A method as described in claim 17, wherein:

said executing the first thread comprises modifying a ver-
sion of the display tree maintained by the first thread for
the GUI to reflect the change to the visual state, and
associating a copy of the modified version of the display
tree with the synchronization point; and

said executing the second thread comprises propagating

state information from the copy of the modified version
of the display tree to a version of the display tree main-
tained by the second thread, and rendering the GUI
based on the version of the display tree maintained by
the second thread.

20. A method as described in claim 17, further comprising
executing the first thread to perform other tasks subsequent to
emitting the synchronization point, and without waiting for
the second thread to process the synchronization point.

#* #* #* #* #*

