
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0368515 A1

Fortini et al.

US 20140368515A1

(43) Pub. Date: Dec. 18, 2014

(54)

(71)

(72)

(21)

(22)

COALESCING GRAPHICS OPERATIONS

Applicant: Microsoft Corporation, Redmond, WA
(US)

Inventors: Christian Fortini, Sammamish, WA
(US); Rico Mariani, Redmond, WA
(US); Anjali S. Parikh, Redmond, WA
(US); Matthew P. Kotsenas, Seattle, WA
(US); Jason J. Weber, Medina, WA
(US)

Appl. No.: 13/918,825

Filed: Jun. 14, 2013

Publication Classification

(51) Int. Cl.
G06T I/20 (2006.01)

(52) U.S. Cl.
CPC .. G06T 1/20 (2013.01)
USPC .. 345/.505

(57) ABSTRACT
Techniques for coalescing graphics operations are described.
In at least some embodiments, multiple graphics operations
can be generated to be applied to a graphical element, such as
a graphical user interface (GUI). The graphics operations can
be coalesced into a single renderable graphics operation that
can be processed and rendered.

204

-> - 202a

204 -

raphics Data
208 --> PSP210

206 -

204 -

202a

PSP 210

206 - '. 202

- State Change
212

Patent Application Publication Dec. 18, 2014 Sheet 1 of 16 US 2014/0368515 A1

to
14.

Patent Application Publication Dec. 18, 2014 Sheet 2 of 16 US 2014/0368515 A1

200
v

204

—> - 202a
2O6 <

=> 202

U
204 -

Graphics Data
208 > PSP210

206 -

2

2O6

Patent Application Publication Dec. 18, 2014 Sheet 3 of 16 US 2014/0368515 A1

300
v

304

308 -

PSP 314 PSP 312 PSP 310 1

304 -

3O8 v
PSP 314 PSP 312

PSP 31 O
306 -

“...i? state Change
316

Patent Application Publication Dec. 18, 2014 Sheet 4 of 16 US 2014/0368515 A1

400
v

402a
404

406

4 2

1.
a'

Y
a

a'
1

a

K
s
N

Ya
Ya

s

W

408

404

PSP 410
406 -

U

PSP 410

406 - r

Y. State Change
412

22, 4

402a

4.

Patent Application Publication Dec. 18, 2014 Sheet 5 of 16 US 2014/0368515 A1

- - - - - - - - - - - - - - - - - - - 5OO

,
* - - - - - - - - - - - - - - - - - - -

PSP 510

Tree 512

506 , Y - - -

—E)- Tree 514

Patent Application Publication Dec. 18, 2014 Sheet 6 of 16 US 2014/0368515 A1

600
v

606

PSP 610
Change
Data 612

606

—x Tree 614

Tree 608

PSP 616
Change Data

618

Patent Application Publication Dec. 18, 2014 Sheet 7 of 16 US 2014/0368515 A1

First Thread Second Thread

700
Determine a state change to be
propagated to another thread

702
Emit a synchronization point Retrieve the SVnchronization

that includes an indication of the t
state change

704
Proceed with performing other

tasks after emitting the
synchronization point

708
Process the synchronization
point to determine the state

change

710
Apply the state change

Patent Application Publication

Primary Thread

800

Dec. 18, 2014 Sheet 8 of 16

Generate a change to a visual
state of a graphical element

802
Emit a synchronization point that

includes an indication of the
change to the visual state

804
Proceed with performing other

tasks after emitting the
synchronization point

Render Thread

806
Retrieve the synchronization point

808
Process the synchronization point
to determine the change in the
visual state of the graphical

element

810
Render the graphical element to
apply the change in the visual

State

US 2014/0368515 A1

Patent Application Publication Dec. 18, 2014 Sheet 9 of 16 US 2014/0368515 A1

900
\

902 --

Graphics Op Graphics Op Graphics Op
908 910 912

“...St PSP 914
904

H Available

Patent Application Publication Dec. 18, 2014 Sheet 10 of 16 US 2014/0368515 A1

1000
v

Patch 101 Oa
Patch Version
Patch Data
Patch Link

Patch O2a
Patch Version
Patch Data
Patch Link

PSP 1014

Patches
1010a, 1012a

O14.

Patches
101 Oa, 1012a

1016

Patent Application Publication Dec. 18, 2014 Sheet 11 of 16 US 2014/0368515 A1

11OO
v

Patch 1106

Patch Version 1.1
Patch Data

Tree 1102

Patch 1106
Patch Version 1.1 1
Updated Patch Data

Patch 1106

Patch Version 1.1
Updated Patch Data

Patent Application Publication Dec. 18, 2014 Sheet 12 of 16 US 2014/0368515 A1

1200
v

1212

Patches
1216

22, 12

Patent Application Publication Dec. 18, 2014 Sheet 13 of 16 US 2014/0368515 A1

1300
Determine that multiple graphics operations to be

applied to a graphical element

1302
Coalesce the multiple graphics operations into a
combined graphics operation for the graphical

element

1304
Generate processing instructions indicating that

the combined graphics operation is to be
rendered

Patent Application Publication Dec. 18, 2014 Sheet 14 of 16 US 2014/0368515 A1

1400
Generate a patch that describes a change to a

visual state of a graphical element

1402
Determine that the change to the visual state of

the graphical element is to be applied

1404
Update a data structure for the graphical element

based on the patch

1406
Render the graphical element based on the

updated data structure

22, f4

Patent Application Publication Dec. 18, 2014 Sheet 15 of 16 US 2014/0368515 A1

1500
Execute a first thread to generate patches that describe

changes to a visual state of a graphical element

1502
Execute a second thread to apply the patches to update a data
structure for the graphical element and render the graphical

element based on the updated data structure

Patent Application Publication Dec. 18, 2014 Sheet 16 of 16 US 2014/0368515 A1

1600

Platform 1 622

Resources 1624

Y /
w /

s 1.

Cloud
1620

Computing Device 1602
Processing Computer-readable
System 1604 Media 1606

Hardware Memoryl
Elements 610 Storage 1612

Input/Output
Interfaces 608

Process Manager Graphics Module
Module 10 112

Television
1618

Computer
1614

US 2014/03.68515 A1

COALESCING GRAPHCS OPERATIONS

BACKGROUND

0001 Today’s computing devices have an ever-increasing
amount of processing power. For example, a typical device
has a central processing unit (CPU) with multiple processing
cores that can each perform data processing. Further, the
number of cores available on individual processors continues
to increase. With the prevalence of multi-core processors
comes the ability to perform multiple processing tasks on a
CPU in parallel. For example, multiple processing threads
that each handles a particular processing task can execute at
the same time on respective cores of a processor. Thus, the
speed with which multiple tasks can be completed is
increased over previous single-core processors.
0002 While available processing power has increased,
many computing processes still utilize a serial processing
approach for scheduling and/or managing processing tasks.
For example, some applications are not configured to paral
lelize certain processing tasks, and thus do not leverage the
parallel processing capabilities of multi-core processors. By
not parallelizing processing tasks, these processes do not
receive the performance benefits that result from parallel
processing.

SUMMARY

0003. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.
0004 Techniques for coalescing graphics operations are
described. In at least Some embodiments, multiple graphics
operations can be generated to be applied to a graphical
element, such as a graphical user interface (GUI). The graph
ics operations can be coalesced into a single renderable
graphics operation that can be processed and rendered.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The detailed description is described with reference
to the accompanying figures. In the figures, the left-most
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same ref
erence numbers in different instances in the description and
the figures may indicate similar or identical items.
0006 FIG. 1 is an illustration of an environment in an
example implementation that is operable to employ tech
niques discussed herein.
0007 FIG. 2 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0008 FIG. 3 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0009 FIG. 4 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0010 FIG. 5 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0011 FIG. 6 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0012 FIG. 7 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
0013 FIG. 8 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.

Dec. 18, 2014

0014 FIG. 9 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0015 FIG. 10 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0016 FIG. 11 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0017 FIG. 12 illustrates an example implementation sce
nario in accordance with one or more embodiments.
0018 FIG. 13 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
0019 FIG. 14 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
0020 FIG. 15 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
0021 FIG. 16 illustrates an example system and comput
ing device as described with reference to FIG. 1, which are
configured to implement embodiments of techniques
described herein.

DETAILED DESCRIPTION

Overview

0022 Techniques for coalescing graphics operations are
described. In at least Some embodiments, multiple graphics
operations can be generated to be applied to a graphical
element, such as a graphical user interface (GUI). The graph
ics operations can be coalesced into a single renderable
graphics operation that can be processed and rendered.
0023 For instance, consider a scenario where a web
browser displays a webpage. Techniques discussed herein
can utilize a first thread to perform various processing for the
webpage. Such as webpage JavaScript execution, formatting
tasks, layout tasks, input processing tasks, and so forth. A
second independently-running thread can be employed to
perform rendering tasks, such as displaying a current view of
the webpage to a screen.
0024. Based on events that affect visual attributes of the
webpage, the first thread can perform graphics operations that
change visual state information for the webpage. Examples of
Such events include user input to the webpage, animation of
graphical elements, events generated by other processes, and
So forth. The visual state information, for example, can
include changes to a visual state of the webpage. Such as
movement of graphical elements of the webpage, resizing
and/or recoloring of graphical elements, panning and/or
scrolling of the webpage, and so forth.
0025. Further to the example scenario, the second thread
may not be immediately available to process the graphics
operations and render to the webpage based on the operations.
For instance, the second thread may be busy rendering based
on previous graphics operations generated by the first thread.
0026. Accordingly, the graphics operations may be
queued until the second thread becomes available. The graph
ics operations, for instance, may be queued as "synchroniza
tion points' that each corresponds to a discrete change in the
visual state of the webpage. When the second thread becomes
available to process the graphics operations, the graphics
operations can be coalesced into a single graphics operation
that can be applied to the webpage. Either thread, for
example, can combine the graphics operations into a com
bined graphics operation that reflects state changes from each
of the individual operations. Thus, the second thread need not
process each graphics operation separately, but can process
and render the combined graphics operation to arrive at the

US 2014/03.68515 A1

same visual state of the webpage that would occur if each
graphics operation were individually processed.
0027. In the following discussion, an example environ
ment is first described that is operable to employ techniques
described herein. Next, a section entitled “Synchronization
Points for Propagating State Information” describes some
example implementation scenarios and procedures that ulti
lize synchronization points in accordance with one or more
embodiments. Following this, a section entitled “Coalescing
Graphics Operations' describes some example implementa
tion scenarios and procedures for coalescing graphics opera
tions inaccordance with one or more embodiments. Finally, a
section entitled “Example System and Device' describes an
example system and device that are operable to employ tech
niques discussed herein in accordance with one or more
embodiments.
0028. Having presented an overview of example imple
mentations in accordance with one or more embodiments,
consider now an example environment in which example
implementations may by employed.
0029. Example Environment
0030 FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ tech
niques for coalescing graphics operations described herein.
The illustrated environment 100 includes a computing device
102 that may be configured in a variety of ways. For example,
the computing device 102 may be configured as a traditional
computer (e.g., a desktop personal computer, laptop com
puter, and so on), a mobile station, an entertainment appli
ance, a set-top box communicatively coupled to a television,
a wireless phone, a netbook, a game console, a handheld
device (e.g., a tablet), and so forth as further described in
relation to FIG. 16.
0031 Computing device 102 includes a processor 104,
which is representative of functionality to perform various
types of data processing for the computing device 102. For
example, the processor 104 can representa central processing
unit (CPU) of the computing device 102. The processor 104
includes multiple processor cores that are capable of indi
vidually performing processing tasks. Thus, the processor
104 is configured to perform parallel processing, Such as
executing multiple processing threads simultaneously. Fur
ther examples of implementations of the processor 104 are
discussed below with reference to FIG. 16.
0032. The computing device 102 further includes applica
tions 106, which are representative of functionalities to per
form various tasks via the computing device 102. Examples
of the applications 106 include a word processor application,
an email application, a content editing application, a gaming
application, and so on.
0033. The applications 106 include a web platform appli
cation 108, which is representative of an application that
operates in connection with web content. The web platform
application 108, for example, can include and make use of
many different types of technologies such as, by way of
example and not limitation, uniform resource locators
(URLs), Hypertext Transfer Protocol (HTTP), Representa
tional State Transfer (REST), HyperTextMarkup Language
(HTML), Cascading Style Sheets (CSS), JavaScript, Docu
ment Object Model (DOM), as well as other technologies.
The web platform application 108 can also work with a vari
ety of data formats such as Extensible Application Markup
Language (XAML), Extensible Markup Language (XML).
JavaScript Object Notation (JSON), and the like. Examples of

Dec. 18, 2014

the web platform application 108 include a web browser, a
web application (e.g., “web app’), and so on.
0034) Further illustrated is a process manager module 110,
which is representative of functionality to manage various
aspects of processing tasks for the computing device 102. A
graphics module 112 is also included, which is representative
of functionality to perform various graphics-related tasks for
the computing device 102. For instance, the graphics module
112 can perform graphics processing, rendering tasks, and so
forth. The graphics module 112, for example, can represent a
rendering engine for the applications 106, Such as the web
platform application 108. In at least some embodiments, the
process manager module 110 and/or the graphics module 112
can be leveraged to implement techniques for coalescing
graphics operations discussed herein.
0035. While the process manager module 110 and the
graphics module 112 are illustrated as separate from the
applications 106, this is not intended to be limiting. The
process manager module 110 and/or the graphics module
112, for example, can be implemented as a part and/or exten
sion of the applications 106 such that their respective func
tionalities can be leveraged by the applications 106. Alterna
tively or additionally, the process manager module 110 and/or
the graphics module 112 can be implemented as part of an
operating system of the computing device 102. Further opera
tional aspects of the process manager module 110 and the
graphics module 112 are discussed below.
0036. The computing device 102 includes a display device
114, which is configured to output graphics for the computing
device 102. Displayed on the display device 114 is a graphical
user interface (GUI) 116, which is representative of a GUI
associated with one of the applications 106. The GUI 116, for
example, can include web content presented via the web
platform application 108. For instance, the GUI 116 can
represent a web document, such as a webpage. According to
one or more embodiments, techniques for coalescing graph
ics operations discussed herein can be employed to perform
various processing tasks related to the GUI 116, such as
layout processing, input processing, graphics rendering, and
so forth.

0037 Having described an example environment in which
the techniques described herein may operate, the following
sections now discuss example techniques for utilizing Syn
chronization points for propagating state information, and
then examples techniques for coalescing graphics operations
in accordance with one or more embodiments.

0038 Synchronization Points for Propagating State Infor
mation

0039. The following section describes example imple
mentation scenarios and procedures further to utilizing Syn
chronization points for propagating state information in
accordance with one or more embodiments.

0040
0041. The following discussion describes some example
implementation scenarios for techniques for utilizing Syn
chronization points for propagating state information
described herein. The example implementation scenarios
may be implemented in the environment 100 of FIG. 1, the
system 1600 of FIG. 16, and/or any other suitable environ
ment. The scenarios, for example, can represent functionality
of the process manager module 110 and/or the graphics mod
ule 112. For instance, the processing threads discussed in the

Example Implementation Scenarios

US 2014/03.68515 A1

different scenarios can be generated and/or maintained by the
process manager module 110 and/or the graphics module
112.

0042 FIG. 2 illustrates an example implementation sce
nario 200 in accordance with one or more embodiments. The
scenario 200 includes a GUI 202, which is representative of
various graphical elements that can be displayed. The GUI
202, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 202 includes a visual element 202a.

0043. The scenario 200 further includes a primary thread
204 and a render thread 206, which are representative of
threads that are employed to perform various processing tasks
as part of generating, managing, and rendering the GUI 202.
0044 Generally, the primary thread 204 represents a pro
cessing thread that performs various types of management
tasks for the GUI 202. Examples of management tasks
include generating the GUI 202, such as for one of the appli
cations 106. Other examples of management tasks include
executing script (e.g., JScript) for the GUI 202, GUI format
ting tasks, GUI layout tasks, DOM manipulations, and so
forth. The render thread 206 represents a processing thread
that performs rendering operations. Such as painting pixels of
the GUI 202 to a display. For example, changes to visual
aspects of the GUI 202 generated by the primary thread 204
can be rendered for display by the render thread 206. Accord
ing to various embodiments, the primary thread 204 can pass
various graphics information to the render thread 206 for
rendering and display.
0045 Proceeding to the centerportion of the scenario 200,
a change to a visual aspect of the GUI 202 causes the primary
thread 204 to generate graphics data 208. The graphics data
208, for example, can describe a change to a visual aspect of
the GUI 202. Examples of such changes include color
changes, visual element resizing, animation of a visual ele
ment, repositioning of a visual element, and so forth. The
change, for instance, can occur in various ways, including in
response to user interaction with the GUI 202 via various
types of user input, time based notifications, or changes from
executing website code.
0046. In response to generating the graphics data 208, a
paintable synchronization point (PSP) 210 is generated. Gen
erally, the PSP210 represents a set of information that can be
used by the render thread 206 to render portions of the GUI
202. The PSP210, for example, can include and/or be based
on the graphics data 208. Alternatively or additionally, the
PSP 210 can include information sufficient to enable the
render thread 206 to retrieve the graphics data 208, such as a
memory address at which the graphics data 208 resides.
0047. In at least some embodiments, the PSP210 includes
various types of state information for the GUI 202. For
example, the PSP 210 can include state change information,
such as an indication of visual attributes of the GUI 202 that
have changed since a previous PSP was generated and/or a
previous render operation was performed by the render thread
206. Thus, according to one or more embodiments, the PSP
210 may not include data for a complete rendering of the GUI
202, but may simply indicate state change information Suffi
cient to update the GUI 202 to a new visual state. This is not
intended to be limiting, however, and in at least Some embodi
ments a PSP can represent a complete rendering of a GUI.

Dec. 18, 2014

0048. After emitting the PSP210, the primary thread 204
may continue processing management tasks for the GUI 202,
e.g., without waiting for the render thread 206 to retrieve
and/or process the PSP210.
0049 Proceeding to the lower portion of the scenario 200,
the render thread 206 processes the PSP 210 to generate a
state change 212. Generally, the state change 212 is a re
render of a portion of the GUI 202 based on state information
from the PSP210. Thus, the state change 212 is applied to the
GUI 202 (e.g., as part of a render and/or draw operation) to
synchronize a visual state of the GUI 202 with the visual state
indicated by the PSP 210. In this particular example, appli
cation of the state change 212 causes a repositioning of the
visual element 202a, e.g., a translational movement of the
visual element 202a within the GUI 202.
0050 Thus, the scenario 200 illustrates that changes to a
visual state of a graphical element generated by a first thread
can be encapsulated via a PSP that can be consumed by
another thread to apply the changes. Further, the first thread
may continue performing other processing tasks after the PSP
has been emitted, e.g., without waiting for the PSP to be
processed. Thus, in at least some embodiments, a PSP pro
vides a mechanism by which state information can be trans
ferred between independent threads.
0051. In at least some embodiments, techniques discussed
herein enable multiple PSPs to be generated and processed
asynchronously. For instance, consider the following
example scenario.
0052 FIG. 3 illustrates an example implementation sce
nario 300 in accordance with one or more embodiments. The
scenario 300 includes a GUI 302, which is representative of
various graphical elements that can be displayed. The GUI
302, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 302 includes a visual element 302a.
0053. The scenario 300 further includes a primary thread
304 and a render thread 306 for the GUI302. Example details
concerning a primary thread and a render thread are discussed
above. Based on visual state changes to the GUI 302, a PSP
queue 308 is generated that includes multiple PSPs. For
instance, the PSP queue 308 includes a PSP 310, a PSP 312,
and a PSP 314 that are generated by the primary thread 304.
The PSPs can be generated based on various events, such as
user interaction with the GUI 302, events generated by pro
cesses, and so forth. As referenced above, the PSPs 310,312,
314 correspond to changes in a visual state of the GUI 302.
For instance, the PSPs 310,312,314 can correspond to move
ment of the visual element 302a in the GUI 302.

0054. In at least some embodiments, PSPs can accumulate
in the PSP queue 308 when the PSPs are generated by the
primary thread 304 faster than the render thread 306 can
process and apply the PSPs. For instance, the render thread
306 may be performing a complex and time-consuming ren
der operation based on a recently consumed PSP such that the
primary thread 304 generates additional PSPs before the ren
der thread 306 completes the complex render operation. Thus,
PSPs can be queued in a temporally sequential order, with an
older PSP placed before a newer one in the queue.
0055 Proceeding to the lower portion of the scenario 300,
the render thread 306 retrieves the PSP 310 from the PSP
queue 308. The render thread 306 processes the PSP 310 to
generate a state change 316. The state change 316 corre
sponds to a change in a visual state of the GUI 302. For
example, the state change 316 represents a difference

US 2014/03.68515 A1

between a previous visual state and a current visual state of
the GUI 302. Accordingly, in at least some embodiments, the
PSP 310 and thus the state change 316 do not represent a
complete re-rendering of the GUI 302, but include data that
can be applied to update the visual state of a portion of the
GUI 3O2.

0056. The render thread 306 applies the state change 316
to the GUI 302, such as by re-rendering a portion of the GUI.
For instance, the render thread 306 can change a visual aspect
of the visual element 302a, such as recoloring the visual
element, resizing the visual element, and so forth, based on
data from the state change 316 generated from the PSP 310.
Alternatively or additionally, applying the state change 316
can involve movement of the visual element 302a, such as
translation, rotation, and so forth.
0057. In response to the render thread 306 retrieving and
processing the PSP 310, the PSPs 312,314 move up in the
PSP queue 308. Thus, after the render thread 306 is finished
processing and applying the PSP 310, the render thread 306
can retrieve and process the PSP 312. In at least some embodi
ments, PSPs are consumed by the render thread 306 from the
PSP queue 308 in an order in which they were generated by
the primary thread 304 and placed in the queue. Processing of
PSPs from the PSP queue 308 can continue until no further
PSPs remain to be retrieved in the PSP queue 308, and/or the
GUI 302 is closed.

0058. Thus, the primary thread 304 can generate PSPs that
represent multiple visual state changes to the GUI 302, and
can place them in the PSP queue 308 for subsequent process
ing by the render thread 306. This enables the primary thread
304 to be available to perform other processing tasks without
waiting for the render thread 306 to consume PSPs from the
PSP queue 308. Accordingly, the primary thread 304 and the
render thread 306 can run independently, with interaction
between the threads occurring via PSPs.
0059. In at least some embodiments, techniques discussed
herein enable user input to be efficiently processed via a
render thread. For instance, consider the following example
scenario.

0060 FIG. 4 illustrates an example implementation sce
nario 400 in accordance with one or more embodiments. The
scenario 400 includes a GUI 402, which is representative of
various graphical elements that can be displayed. The GUI
402, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 402 includes a visual element 402a.

0061 Further illustrated are a primary thread 404 and a
render thread 406 for the GUI 402. Details concerning pri
mary threads and render threads are discussed above.
0062 Proceeding to the centerportion of the scenario 400,
a user provides input 408 to the GUI 402. Examples of the
input 408 include touch input, mouse input, keyboard input,
Voice input, and so forth. In at least Some embodiments, the
input 408 represents input data received from an input func
tionality, Such as an input device driver.
0063. In response to receiving the input 408, the primary
thread 404 processes the input 408 to generate a PSP 410. The
PSP 410 represents changes to the GUI 402 based on the input
408. The PSP 410, for example, can indicate various manipu
lations of the GUI 402. For instance, the PSP 410 can indicate
that the GUI 402 is to be scrolled in a display area, a Zoom-in
or a Zoom-out on a portion of the GUI 402, a change to the
visual element 402a, and so forth.

Dec. 18, 2014

0064 Continuing to the lower portion of the scenario 400,
the render thread 406 retrieves and processes the PSP 410 to
generate a state change 412 for the GUI 402. The state change
412 indicates a re-render of the GUI 402 based on the PSP
410, e.g., based on the input 408. Thus, the render thread 406
renders the GUI 402 based on the input 408. As referenced
above, this can include scrolling the GUI 402, Zooming on a
portion of the GUI 402, panning the GUI 402, and/or other
manipulations of portions of the GUI 402.
0065. Thus, once the render thread 406 has obtained data
describing a user input (e.g., from a PSP and/or otherwise),
the render thread 406 can apply the input to the GUI 402
independent of interaction with the primary thread 404. This
enables the primary thread 404 to perform other processing
while the input is being applied by the render thread 406, and
enables the render thread 406 to actively render the GUI 402
based on the input 408 even if the primary thread 404 is busy
with another task.

0066. According to various embodiments, data that
describes a visual region of a display (e.g., a GUI) can be
represented as a tree structure, or “display tree. Generally, a
display tree is a data structure that represents various visual
elements of a region of a display. A display tree, for instance,
includes different nodes that correspond to respective visual
elements of a GUI. As described below, interactions between
threads can be characterized via manipulations and versions
of a display tree. For instance, consider the following
example scenarios.
0067 FIG. 5 illustrates an example implementation sce
nario 500 in accordance with one or more embodiments. The
scenario 500 includes a GUI 502, which is representative of
various graphical elements that can be displayed. The GUI
502, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 502 includes various visual elements, such as win
dows, graphics, text, images, Graphics Processing Unit
(GPU) primitives, and so forth.
0068. The scenario 500 further includes a primary thread
504 and a render thread 506 for the GUI 502. Example details
concerning primary threads and render threads are discussed
above. The primary thread 504 is associated with a display
tree 508, which is a data representation of the GUI 502. The
display tree 508, for example, includes nodes that represent
various visual elements of the GUI 502. For instance, the
display tree 508 includes a parent node that represents the
primary window of the GUI 502, as well as multiple child
nodes that each represents a respective visual element of the
GUI SO2.

0069. According to one or more embodiments, the display
tree 508 is utilized by the primary thread 504 to perform
various processing for the GUI 502. For instance, as various
events occur that indicate modifications to visual elements of
the GUI 502, the primary thread 504 modifies the display tree
508 accordingly. Thus, the display tree 508 is “owned' by the
primary thread 504, and is updateable by the primary thread
504 to reflect various changes that are to be propagated to the
GUI SO2.

(0070 Proceeding to the centerportion of the scenario 500,
a PSP510 is generated by the primary thread 504 according to
various techniques discussed herein. The PSP 510 can be
emitted by the primary thread 504, for example, in response to
various events that change visual aspects of the GUI 502. The
PSP510 is associated with a display tree 512.

US 2014/03.68515 A1

0071. According to one or more embodiments, the display
tree 512 represents a Snapshot (e.g., copy) of the display tree
508 captured at a particular moment. For example, the pri
mary thread 504 can modify one or more nodes of the display
tree 508 in response to various events. The primary thread504
can then generate a copy of the display tree 508 as the display
tree 512. The primary thread 504 emits the PSP 510 that
includes and/or is linked to the display tree 512. Thus, the
display tree 512 corresponds to a state of the display tree 508
at a particular instance in time.
0072. After the primary thread504 emits PSP510 with the
display tree 512, the primary thread 504 can proceed with
performing other tasks. For instance, the primary thread can
make further modifications to the display tree 508 without
affecting the display tree 512.
0073. The scenario 500 further includes a display tree 514
maintained by the render thread 506. Generally, the display
tree 514 is utilized by the render thread 506 for rendering
visual aspects of the GUI 502. For instance, the render thread
506 reads from the display tree 514 to draw to the GUI 502.
According to one or more embodiments, the display tree 514
was generated and/or modified based on a display tree from a
previous PSP, e.g., a PSP received prior to the PSP510. Thus,
the display tree 514 is “owned by the render thread 506. For
example, in at least some embodiments the display tree 514
cannot be directly accessed or modified by the primary thread
SO4.
0074) Proceeding to the lower portion of the scenario 500,
the render thread 506 retrieves the PSP 510 and modifies the
display tree 514 based on the display tree 512 associated with
the PSP510. The display tree 512, for instance, can indicate
changes to one or more nodes of the display tree 514. Thus,
the changes can be propagated from the display tree 512 to the
display tree 514. Once the state of the display tree 514 is
synchronized with the state of the display tree 512, the render
thread 506 can proceed with rendering the GUI 502 based on
the updated display tree 514.
0075 Thus, visual processing applied by the primary
thread504 to the display tree 508 is propagated via the display
tree 512 to the render thread 506, which then applies the
visual processing to its own display tree 514.
0076 Further illustrated in the lower portion of the sce
nario 500 is that the primary thread 504 emits a PSP 516
which includes a display tree 518. As with the display tree
512, the display tree 518 is a copy of the display tree 508
generated by the primary thread 504. The display tree 518, for
example, includes changes to the state of the display tree 508
that have occurred subsequent to the display tree 512 having
been generated.
0077. When the render thread 506 is finished drawing to
the GUI502 from the current state of the display tree 514, the
render thread 506 can retrieve the PSP516 and can synchro
nize the display tree 514 with the display tree 518. The render
thread 506 can then proceed with rendering the GUI 502
based on the updated display tree 514.
0078 Thus, the scenario 500 illustrates that various states
of a display tree can be maintained for a display region. For
instance, with reference to the GUI 502, at least three states of
a display tree for the GUI 502 can be maintained. The primary
thread 504 maintains the display tree 508 to which it applies
various changes to the visual state of the GUI 502. To enable
changes to the visual state of the GUI 502 to be propagated to
the render thread 506 and displayed, the state of the display
tree 508 can be captured via an intermediate display tree that

Dec. 18, 2014

can be persisted for consumption by the render thread 506.
For instance, the display trees 512,518 represent snapshots of
the display tree 508 captured at different states of the display
tree 508. Further, the render thread 506 maintains the display
tree 514 which it synchronizes to the intermediate display
trees and reads from for rendering to the GUI 502.
0079. In at least some embodiments, PSPs can be
employed to propagate changes to a display tree without
requiring entire copies of a display tree to be generated. For
instance, consider the following example scenario.
0080 FIG. 6 illustrates an example implementation sce
nario 600 in accordance with one or more embodiments. The
scenario 600 includes a GUI 602, which is representative of
various graphical elements that can be displayed. The GUI
602, for example, can represent an implementation of the GUI
116 discussed above with reference to the environment 100.
The GUI 602 includes various visual elements, such as win
dows, graphics, text, images, and so forth.
I0081. The scenario 600 further includes a primary thread
604 and a render thread 606 for the GUI 602. Example details
concerning primary threads and render threads are discussed
above. The primary thread 604 is associated with a display
tree 608, which is a data representation of the GUI 602.
I0082 Proceeding to the centerportion of the scenario 600,
a PSP 610 is generated by the primary thread 604 according to
various techniques discussed herein. The PSP 610 can be
emitted by the primary thread 604, for example, in response to
various events that change visual aspects of the GUI 602.
I0083. The PSP 610 includes change data 612, which rep
resents changes to the display tree 608 that have occurred. For
example, the primary thread 604 can modify one or more
nodes of the display tree 608 in response to various events.
Other types of changes may also be made. Such as adding
nodes, deleting nodes, rearranging nodes, and so forth. The
primary thread 604 can then generate the change data 612.
which specifies the changes that are made to the display tree
608. The primary thread 604 emits the PSP 610 that includes
and/or is linked to the change data 612. According to various
embodiments, the change data 612 corresponds to changes to
the display tree 608 that have occurred since a previous PSP
was emitted. Thus, the PSP 612 does not include an entire
copy of the display tree 608.
I0084. After the primary thread 604 emits the PSP 610 with
the change data 612, the primary thread 604 can proceed with
performing other tasks. For instance, the primary thread can
make further modifications to the display tree 608 without
affecting the change data 612.
I0085. The scenario 600 further includes a display tree 614
maintained by the render thread 606. Generally, the display
tree 614 is utilized by the render thread 606 for rendering
visual aspects of the GUI 602. The display tree 614, for
instance, corresponds to a version of the display tree 608
generated based on a previous PSP.
I0086 Proceeding to the lower portion of the scenario 600,
the render thread 606 retrieves the PSP 610 and modifies the
display tree 614 based on the change data 612. Thus, the
changes indicated in the change data 612 can be applied to the
display tree 614. The render thread 606 can then proceed with
rendering the GUI 602 based on the updated display tree 614.
I0087. According to various embodiments, the PSP 610
persists until the render thread 606 is finished reading data
from and/or otherwise utilizing the PSP 610. For instance, the
PSP 610 represents a valid state of the display tree 608 that
remains valid and usable by the render thread 606 until the

US 2014/03.68515 A1

render thread 606 releases the PSP 610, and/or moves on to
processing a Subsequent PSP. In at least some embodiments,
after the render thread 606 is finished processing the PSP 610,
a memory address and/or addresses for the PSP 610 can be
released to be used for other purposes, e.g., a subsequent PSP.
0088. Thus, visual processing applied by the primary
thread 604 to the display tree 608 is propagated via the change
data 612 to the render thread 606, which then applies the
visual processing to its own display tree 614.
I0089. Further illustrated in the lower portion of the sce
nario 600 is that the primary thread 604 emits a PSP 616
which includes change data 618. The change data 618, for
example, indicates changes to the state of the display tree 608
that have occurred subsequent to the primary thread 604
emitting the PSP 610.
0090. When the render thread 606 is finished drawing to
the GUI 602 from the current state of the display tree 614, the
render thread 606 can retrieve the PSP 616 and can synchro
nize the display tree 614 based on the change data 618. The
render thread 606 can then proceed with rendering the GUI
602 based on the updated display tree 614.
0091. Thus, the scenario 600 illustrates that PSPs can be
employed to share changes in a visual state of a GUI among
threads without generating multiple copies of a display tree
for the GUI. Further, the lifetime of a PSP can be managed to
enable a particular state of a display tree to be persisted for a
render thread, while a primary thread that generated the PSP
performs other processing.
0092. While the scenarios presented above are discussed
with reference to rendering scenarios, this is not intended to
be limiting. For example, synchronization points can be used
to propagate state information between a variety of different
threads as part of a variety of different processes and/or tasks.
0093. In at least some embodiments, a GUI may include
certain elements which cannot or must not be rendered sepa
rately on a different thread, e.g., for reasons of economy or
correctness. Therefore, such embodiments can choose to pro
cess a PSP on a primary thread until they again deem it
appropriate to use a render thread for improved performance.
Further, such embodiments may choose to defer creation of a
render thread, pause it, or shut it down depending on avail
ability of resources.
0094. Having discussed some example implementation
scenarios, consider now a discussion of Some example pro
cedures in accordance with one or more embodiments.

0095 Example Procedures
0096. The following discussion describes some example
procedures for synchronization points for state information in
accordance with one or more embodiments. The example
procedures may be employed in the environment 100 of FIG.
1, the system 1600 of FIG. 16, and/or any other suitable
environment.

0097 FIG. 7 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. The
method is discussed with reference to steps associated with a
first thread and steps associated with a second thread. The first
thread and the second thread can be associated with a variety
of different processes and/or tasks.
0098 Step 700 determines a state change to be propagated
to another thread. As discussed above, the state change can
relate to a change in a visual aspect of a graphical element,
such as a portion of the GUI. A variety of other types of state
changes, however, can be propagated according to various

Dec. 18, 2014

embodiments. A state change, for example, can relate to a
variety of different processes and/or resources associated
with a computing device.
0099 Step 702 emits a synchronization point that includes
an indication of the state change. With reference to a change
to visual aspect, for example, the synchronization point can
include and/or identify data that indicates how the visual
aspect is to be changed. For instance, the synchronization
point can include one or more portions of the display tree for
a graphical element that define how the graphical element is
to be rendered and displayed. Alternatively and/or addition
ally, the synchronization point can identify where data for the
state change can be found, such as a memory address.
0100. In at least some embodiments, emitting a synchro
nization point can include placing the synchronization point
in a synchronization point queue. For instance, if one or more
other synchronization points remain to be processed, the Syn
chronization point can be placed behind the other synchroni
Zation points in a synchronization point queue Such that the
different synchronization points can be processed in order.
0101 Step 704 proceeds with performing other tasks after
emitting the synchronization point. The first thread, for
example, can continue executing other tasks, such as gener
ating additional synchronization points. Thus, the first thread
need not wait until the synchronization point is consumed by
the second thread to continue processing.
0102 Step 706 retrieves the synchronization point. The
second thread, for example, can retrieve the synchronization
point from a synchronization point queue.
0103 Step 708 processes the synchronization point to
determine the state change. The state change, for example,
can relate to a change in a visual state of a graphical element,
such as a GUI. As referenced above, however, embodiments
are not limited to state changes in visual elements, and can
refer to state changes in a variety of different processes,
resources, and so on.
0104 Step 710 applies the state change. The state change,
for example, can be applied to a process and/or resource
associated with the synchronization point. For instance, the
state change can be applied to change the visual appearance of
a graphical element.
0105 FIG. 8 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. The
method is discussed with reference to steps associated with a
primary thread, and steps associated with a render thread.
Example embodiments and functionalities of a primary
thread and a render thread are discussed above.

0106 Step 800 generates a change to a visual state of a
graphical element. For instance, the primary thread can per
form various types processing that causes a change to a
graphical element, Such as a visual change to a GUI. As
detailed above, the primary thread can make modifications to
a display tree maintained by the primary thread.
0107 Step 802 emits a synchronization point that includes
an indication of the change to the visual state. The synchro
nization point, for example, can include data that character
izes the change, and/or can identify where the data may be
retrieved. For instance, the synchronization point can include
and/or identify a version of a display tree maintained by the
primary thread.
0.108 Step 804 proceeds with performing other tasks after
emitting the synchronization point. The primary thread, for

US 2014/03.68515 A1

example, need not wait for the render thread to consume the
synchronization point before proceeding with other process
ing tasks.
0109 Step 806 retrieves the synchronization point. The
render thread, for instance, can retrieve the synchronization
point from a synchronization point queue.
0110 Step 808 processes the synchronization point to
determine the change in the visual state of the graphical
element. For instance, a display tree included with and/or
identified by the synchronization point can be inspected.
0111 Step 810 renders the graphical element to apply the
change in the visual state. The render thread, for example, can
apply the changes to the visual state to a display tree main
tained by the render thread. The render thread can then render
the graphical element based on the updated display tree.
0112 While embodiments are discussed herein with ref
erence to interaction between two different threads, this is
presented for purpose of example only. For instance, in at
least some embodiments multiple different threads can pro
duce synchronization points and can emit the synchronization
points for processing by a particular thread. In a GUI render
ing scenario, for example, multiple different threads can pro
duce synchronization points that specify changes to visual
aspects of the GUI. The synchronization points can be emit
ted by the different threads for consumption by a rendering
thread.
0113 Having discussed some example implementation
scenarios and procedures for synchronization points for state
information, consider now some example implementation
scenarios and procedures for coalescing graphics operations
in accordance with one or more embodiments.
0114 Coalescing Graphics Operations
0115 The following section describes example imple
mentation scenarios and procedures further to coalescing
graphics operations in accordance with one or more embodi
ments. In at least Some embodiments, the scenarios and pro
cedures discussed below can employ aspects of the tech
niques discussed above.
0116 Example Implementation Scenarios
0117 The following discussion describes some example
implementation scenarios for techniques for coalescing
graphics operations described herein. The example imple
mentation scenarios may be implemented in the environment
100 of FIG. 1, the system 1600 of FIG. 16, and/or any other
Suitable environment. The scenarios, for example, can repre
sent functionality of the process manager module 110 and/or
the graphics module 112. For instance, the processing threads
discussed in the different scenarios can be generated and/or
maintained by the process manager module 110 and/or the
graphics module 112.
0118 FIG. 9 illustrates an example implementation sce
nario 900 in accordance with one or more embodiments. The
scenario 900 includes a primary thread 902 and a render
thread 904 for a GUI 906. Example implementations of a
primary thread and a render thread are discussed above.
0119. As further illustrated in the upper portion of the
scenario 900, the render thread 904 is performing a render
operation, such as based on a PSP emitted by the primary
thread 902. While the render thread 904 is performing the
render operation, the primary thread 902 is performing addi
tional processing tasks, such as generating visual changes to
be rendered to the GUI 906. For instance, the primary thread
902 generates a graphics operation 908, a graphics operation
910, and a graphics operation 912. Generally, the graphics

Dec. 18, 2014

operations 908,910,912 represent discrete visual changes to
be applied to the GUI 906 that are generated via separate
respective processing operations. The graphics operations
908,910,912 can each be associated with the same graphical
element of the GUI906, or with different respective graphical
elements. In at least Some embodiments, the graphics opera
tions can each represent a PSP generated by the primary
thread 902.
I0120 Proceeding to the centerportion of the scenario 900,
the render thread 904 completes the render operation, and
thus is available to perform additional rendering tasks. In
response, the graphics operations 908,910,912 are coalesced
into a PSP 914. According to one or more embodiments, the
PSP 914 represents a combination of the graphics operations
908,910,912 such that visual changes to the GUI906 indi
cated in each of the graphics operations are represented in the
PSP 914.
I0121 For instance, considera scenario where the graphics
operations 908,910,912 each affect the same graphical ele
ment of the GUI 906. The graphics operation 908 changes a
color of the graphical element, and the graphics operations
910, 912 indicate respective translational movements of the
graphical element within the GUI 906. Thus, the PSP 914
includes data for the color change, as well as the translational
moVementS.

0.122 Proceeding to the lower portion of the scenario 900,
the render thread 904 retrieves and processes the PSP 914. For
instance, the render thread 904 renders to the GUI 906 based
on graphics operations indicated in the PSP 914.
(0123 Thus, the scenario 900 illustrates that in one or more
embodiments, when multiple graphics operations (e.g.,
PSPs) are accumulated (e.g., when a render thread is busy),
the graphics operations can be coalesced into a combined
graphics operation, Such as via a PSP. The combined graphics
operation can be rendered Such that visual changes indicated
in each individual operation are reflected in the displayed
result. Accordingly, processing time and resources are con
served in that a render thread need not iterate through multiple
individual operations, but can simply apply a single operation
that reflects multiple combined operations.
0.124 Various techniques can be employed to track visual
changes to graphical elements. For instance, a “patching
model can be utilized, which characterizes changes to visual
elements as patches that can be applied prior to rendering. For
instance, consider the following example scenarios.
0.125 FIG. 10 illustrates an example implementation sce
nario 1000 inaccordance with one or more embodiments. The
scenario 1000 includes a primary thread 1002, which is rep
resentative of one or more different types of processing
threads that can be employed to perform various processing
tasks for a GUI 1004. Example implementations of a primary
thread are discussed above.
0.126 Associated with the primary thread 1002 is a display
tree 1006, which is representative of a data structure for
defining aspects of the GUI 1004. The display tree 1006, for
example, includes multiple nodes that define various
attributes of the GUI 1004. For instance, individual nodes of
the display tree 1006 can include data that defines respective
graphical elements of the GUI 1004, such as a window, a text
element, an image element, a Tillable field, a selectable con
trol, and so forth.
I0127. For instance, the display tree 1006 includes a parent
node 1008, a child node 1010, and a child node 1012. The
parent node 1008, for example, can represent a primary win

US 2014/03.68515 A1

dow of the GUI 1004. The child nodes, 1010, 1012 represent
graphical elements within the primary window.
0128. According to one or more embodiments, the pri
mary thread 1002 generates “patches” for the display tree
1006 to indicate changes to the GUI 1004. For instance, when
an event occurs that changes a visual attribute of the GUI
1004, the primary thread 1002 generates a patch for a node of
the display tree 1006 that corresponds to the changed visual
attribute.

0129. Consider, for example, that an event processed by
the primary thread 1002 causes a change to graphical ele
ments associated with the nodes 1010, 1012, respectively.
Examples of an event include user input, animation, color
changes, events generated by other processes, and so forth. In
response to the event, the primary thread 1002 generates a
patch 1010a for the node 1010, and a patch 1012a for the node
1012.

0130. The node 1010 includes a link to the patch 1010a
and a version number for the patch 1010a. The patch 1010a
further includes a patch version, which indicates a version for
the patch 1010a. For instance, multiple changes to the node
1010 can occur, with a patch being generated for each change.
As each new patch is generated, a version number for each
patch can be updated to indicate a relative position of each
patch in a sequence of patches. As detailed below, this can
enable changes to a node to be accurately rendered.
0131 The patch 1010a also includes patch data, which
indicates changes to the node 1010. The patch data, for
example, can indicate changes Such as movement of a graphi
cal element, color changes, size changes, and so forth. A patch
can include a variety of other types of data as well, in accor
dance with one or more embodiments.

0132 Similar to the patch 1010a, the patch 1012a includes
a node ID and a patch version.
0.133 According to various embodiments, the node 1010
includes a link (e.g. a pointer) to the patch 1010a, and the
node 1012 includes a link to the patch 1012a. Thus, when a
thread accesses a node, the presence of a link indicates that a
patch exists for the node. A link can be followed to access an
associated patch.
0134. In at least some embodiments, a patch is cumulative
in nature such that Subsequent changes to a node cause an
existing patch for the node to be updated. Accordingly, the
primary thread 1002 can base further changes to the state of
the node 1010 on the patch 1010a. As detailed below, for
instance, the primary thread 1002 can generate an updated
version of the patch 1010a to indicate further changes in a
State of the node 1010.

0135 Proceeding to the center portion of the scenario
1000, the visual changes indicated by the patches 1010a,
1012a are to be propagated to the GUI 1004. The primary
thread 1002, for example, can determine that visual changes
to the GUI 1004 are to be applied by a render thread. Accord
ingly, the primary thread 1002 emits a PSP 1014, which
includes the patches 1010a, 1012a.
0.136 Continuing to the lower portion of the scenario
1000, a render thread 1016 retrieves and processes the PSP
1014. For instance, the render thread 1016 applies patch data
from the patch 1010a to the node 1010, and patch data from
the patch 1012a to the node 1012, to generate an updated
display tree 1018. Thus, data of the nodes 1010, 1012 is
updated based on the patches 1010a, 1012a, respectively. The

Dec. 18, 2014

render thread 1016 then reads from the updated display tree
1018 and renders to the GUI 1004 based on data from the
updated display tree 1018.
I0137 With reference to the scenario 800 discussed previ
ously, the individual graphics operations can be implemented
as patches that can be coalesced into a single combined graph
ics operation, e.g., as single PSP
0.138. As illustrated in the scenario 1000, various threads
(e.g., the primary thread 1002 and the render thread 1016) can
maintain logically consistent views of a display tree and
operate based on their respective view of the display tree
without interfering with each other. The primary thread 1002,
for instance, creates patches as needed so that the render
thread 1016 can read from a most recent version of the tree
independent of any unapplied patches for the tree. Thus, the
primary thread 1002 views the display tree in the context of
any unapplied patches. As the render thread 1016 moves
forward in processing time, it applies patches (e.g., from
PSPs), after which the patches can be retired. Thus, the render
thread 1016 views the display tree in its most recently updated
form, e.g., not including any unapplied patches.
0.139. According to various embodiments, a node can be
patched multiple times between render operations (e.g.,
between PSPs) to track changes in node state. For instance,
consider the following example scenario.
0140 FIG. 11 illustrates an example implementation sce
nario 1100 inaccordance with one or more embodiments. The
scenario 1100 represents an example technique for utilizing
patches to track updates to node state for a display tree
between rendering passes. The scenario 1100 includes a dis
play tree 1102, which represents visual attributes of a GUI
1104.

0141 Associated with the display tree 1102 is a patch
1106, which is generated based on a state change that is to be
applied to a visual attribute of the GUI 1104. As illustrated,
the patch 1106 applies to a node 1108 of the display tree 1102.
0.142 Proceeding to the center portion of the scenario
1100, an event (e.g., a processing event) indicates a further
state change that is to be applied to the node 1108. Accord
ingly, patch data in the patch 1106 is updated to reflect the
further state change. In at least some embodiments, the patch
1106 is cumulative, such that multiple changes in state infor
mation for the node 1108 are reflected in the patch data of the
patch 1106.
0.143 Continuing to the lower portion of the scenario
1100, a PSP 1110 that includes the patch 1106 is generated
that indicates that a render operation is to be performed to the
GUI 1104. For instance, the PSP 1110 can be generated by a
primary thread for the GUI 1104. A render thread for the GUI
1104 processes the PSP 1110 and applies the patch 1106 to
the node 1108 to generate an updated display tree 1112.
0144. Along with the patch 1106, other patches generated
for other nodes of the display tree 1102 can be applied by the
render thread to generate the updated display tree 1112. For
instance, State information from the other patches is applied
to the respective nodes.
(0145. In at least some embodiments, a list of nodes that
have associated patches is maintained, e.g., as part of and/or
separate from the PSP1110. Thus, the list can be employed to
generate the updated tree 1112 in an orderly fashion. As
mentioned above, a node includes a link (e.g., a pointer) to
any patches for the node. Thus, keeping a list of nodes for
which patches have been generated provides for a more effi

US 2014/03.68515 A1

cient use of resources since both a node to be patched and
patches for the node can be located in a single operation.
0146. Once the render thread is finished applying patches
from the PSP 1110 to generate the updated display tree 1112,
the render thread can read from the updated display tree 1112
and render to the GUI 1104.
0147 According to various embodiments, different pro
cessing threads can utilize different versions of a display tree.
For instance, consider the follow example implementation
scenario.
0148 FIG. 12 illustrates an example implementation sce
nario 1200 inaccordance with one or more embodiments. The
scenario 1200 includes a primary thread 1202, which per
forms various processing tasks for a GUI 1204. Further illus
trated is a display tree 1206, which represents visual attributes
of the GUI 1004. The display tree 1206 is associated with
patches 1208, which include state information for nodes of
the display tree 1206. As discussed above and below, the
patches 1208 can be generated and/or updated by the primary
thread 1202 between and/or during render operations to
reflect ongoing changes to the visual state of the GUI 1204.
0149 Proceeding to the lower portion of the scenario
1200, a PSP 1120 is emitted by the primary thread 1202 that
includes the patches 1208. The PSP 1120 instructs a render
thread 1212 to apply the patches 1208 and render to the GUI
1204. Thus, the render thread 1212 applies the patches 1208
to generate an updated display tree 1214. For instance, nodes
of the display tree 1206 can be updated with state information
from the patches 1208 to generate the updated display tree
1214.
0150. The render thread 1212 then reads data from the
updated display tree 1214, and renders to the GUI 1204 based
on the data.
0151. Also illustrated is that the primary thread 1202 con
tinues perform processing for the GUI 1204 after the updated
display tree 1214 is generated, and thus generates patches
1216 for the updated display tree 1214. According to various
embodiments, the primary thread 1202 views and/or operates
on the updated display tree 1214 in the context of the display
tree itself, as well as the associated patches 1216. The render
thread 1212, however, accesses only the updated display tree
1214 and not the patches 1216. Further, the primary thread
1202 can continue to perform processing (e.g., generating the
patches 1216) after the updated display tree 1214 is generated
and without waiting for the render thread 1212 to render
based on the updated display tree 1214.
0152 Thus, the primary thread 1202 generates and/or
updates patches based on different events that affect the visual
state of the GUI 1204. The render thread 1212 occasionally
updates a display tree for the GUI 1204 with patches that have
accumulated since a previous display tree update. The render
thread 1212 renders from the most recent version of a display
tree. Such as the updated display tree 1214. Accordingly,
patches can be used to track changes in visual state of the GUI
1204 between render operations, and can be applied to update
a renderable state of a display tree for the GUI 1204.
0153. Example Procedures
0154 The following discussion describes some example
procedures for coalescing graphics operations in accordance
with one or more embodiments. The example procedures may
be employed in the environment 100 of FIG. 1, the system
1600 of FIG. 16, and/or any other suitable environment.
0155 FIG. 13 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. Step

Dec. 18, 2014

1300 determines that multiple graphics operations are to be
applied to a graphical element. The graphics operations, for
example, can correspond to multiple changes to a visual state
of a graphical element, Such as a GUI. For instance, the
graphics operations can each represent a separate, distinct
data processing operation. In at least Some embodiments, the
graphics operations can correspond to different patches, dif
ferent PSPs, and so forth.
0156 Step 1302 coalesces the multiple graphics opera
tions into a combined graphics operation for the graphical
element. The combined graphics operation, for example, can
reflect changes to visual state of the graphical element from
each of the multiple graphics operations. Thus, the combined
graphics operation can represent a cumulative effect of each
of the individual graphics operations. In at least some
embodiments, the combined graphics operation can be
applied via a single render operation, e.g., without separately
applying each of the individual graphics operations. Coalesc
ing graphics operations, for instance, can include combining
multiple patches into a single patch that can be applied to a
display tree to generate an updated display tree that reflects
state information from each of the patches.
0157 According to various embodiments, a render thread
may be busy rendering previous graphics operations. Thus,
multiple current graphics operations can be queued while
waiting for the render thread to become available. For
instance, patches can be generated and/or updated based on
the graphics operations. The multiple graphics operations can
be coalesced in response to determining that the render thread
has become available to perform further rendering. A group of
patches, for example, can be combined to generate a single
patch that can be applied to update a display tree.
0158 Step 1304 generates processing instructions indicat
ing that the combined graphics operation is to be rendered.
For example, a render thread for the graphical element can be
instructed and/or notified that a combined patch is to be
applied to update a node for a graphical element, and that the
graphical element is to be rendered based on the updated
node. In at least some embodiments, a PSP can be generated
that includes or points to the combined graphics operation,
e.g., to a patch and/or group of patches to be used to update a
display tree.
0159. In at least some embodiments, a render thread can
apply patches for multiple pending PSPs to a display tree, and
then render from the display tree based on the most recently
applied PSP. This enables a final visual result of multiple
PSPs to be realized without requiring multiple intermediate
draw operations, thus conserving system resources.
0160 FIG. 14 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. In at
least some embodiments, the method describes an example
way of coalescing graphics operations for a graphical ele
ment.

0.161 Step 1400 generates a patch that describes a change
to a visual state of a graphical element. The patch, for
example, can be associated and/or linked to a node of a tree
structure for a graphical element, such as a GUI. Thus, the
patch can describe changes to be made to the node data. In
various embodiments, the patch is separate from an associ
ated node, and thus state information included in the patch
does not affect a renderable state of the node until the patch is
applied to the node.

US 2014/03.68515 A1

0162 Step 1402 determines that the change to the visual
state of the graphical element is to be applied. For instance, an
indication that a render thread is available to render the
change can be received.
0163 Step 1404 updates a data structure for the graphical
element based on the patch. As discussed above, for instance,
the patch can be applied to a node for the graphical element
Such that graphics data in the node is updated and/or replaced
with graphics data from the patch. In at least some embodi
ments, multiple different patches can be applied to respective
different nodes of a display tree to generate a renderable
updated version of the display tree.
0164. Step 1406 renders the graphical element based on
the updated data structure. For example, a render thread can
read from the updated data structure, and render the graphical
element based on the updated data structure.
0165 While embodiments are discussed herein with ref
erence to updating an existing data structure (e.g., an existing
node), it is to be appreciated that the techniques can be
employed to generate a new data structure. A patch, for
instance, can include instructions for generating a new node,
a new Sub-tree, and so forth. Thus, data structures can be
created and updated via techniques discussed herein.
0166 FIG. 15 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. In at
least some embodiments, the method describes an example
way of utilizing multiple threads for coalescing graphics
operations.
(0167 Step 1500 executes a first thread to generate patches
that describe changes to a visual state of a graphical element.
As discussed above, for example, a primary thread for a GUI
can generate and/or update patches for a display tree for a
GUI.
0168 Step 1502 executes a second thread to apply the
patches to update a data structure for the graphical element
and render the graphical element based on the updated data
structure. For instance, as discussed above, a render thread for
a GUI can apply the patches to a display tree to generate an
updated display tree, and render one or more portions of the
GUI based on the display tree.
0169. According to various embodiments, the first thread
and the second thread can be executed on different respective
processor cores. Further, although a single thread is discussed
as generating and applying patches to a data structure, it is to
be appreciated that embodiments may employ multiple dif
ferent threads to generate, update, and/or apply patches to a
data structure. Additionally, embodiments may employ mul
tiple rendering threads for rendering from a data structure,
Such as a display tree.
0170 Having discussed some example procedures, con
sider now a discussion of an example system and device in
accordance with one or more embodiments.
0171 Example System and Device
0172 FIG. 16 illustrates an example system generally at
1600 that includes an example computing device 1602 that is
representative of one or more computing systems and/or
devices that may implement various techniques described
herein. For example, the computing device 102 discussed
above with reference to FIG. 1 can be embodied as the com
puting device 1602. The computing device 1602 may be, for
example, a server of a service provider, a device associated
with the client (e.g., a client device), an on-chip system,
and/or any other Suitable computing device or computing
system.

Dec. 18, 2014

0173 The example computing device 1602 as illustrated
includes a processing system 1604, one or more computer
readable media 1606, and one or more Input/Output (I/O)
Interfaces 1608 that are communicatively coupled, one to
another. Although not shown, the computing device 1602
may further include a system bus or other data and command
transfer system that couples the various components, one to
another. A system bus can include any one or combination of
different bus structures, such as a memory bus or memory
controller, a peripheral bus, a universal serial bus, and/or a
processor or local bus that utilizes any of a variety of bus
architectures. A variety of other examples are also contem
plated, such as control and data lines.
0.174. The processing system 1604 is representative of
functionality to perform one or more operations using hard
ware. Accordingly, the processing system 1604 is illustrated
as including hardware element 1610 that may be configured
as processors, functional blocks, and so forth. This may
include implementation in hardware as an application spe
cific integrated circuit or other logic device formed using one
or more semiconductors. The hardware elements 1610 are not
limited by the materials from which they are formed or the
processing mechanisms employed therein. For example, pro
cessors may be comprised of semiconductor(s) and/or tran
sistors (e.g., electronic integrated circuits (ICs)). In Such a
context, processor-executable instructions may be electroni
cally-executable instructions.
0.175. The computer-readable media 1606 is illustrated as
including memory/storage 1612. The memory/storage 1612
represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage 1612
may include Volatile media (Such as random access memory
(RAM)) and/or nonvolatile media (such as read only memory
(ROM), Flash memory, optical disks, magnetic disks, and so
forth). The memory/storage 1612 may include fixed media
(e.g., RAM, ROM, a fixed hard drive, and so on) as well as
removable media (e.g., Flash memory, a removable hard
drive, an optical disc, and so forth). The computer-readable
media 1606 may be configured in a variety of other ways as
further described below.
0176 Input/output interface(s) 1608 are representative of
functionality to allow a user to enter commands and informa
tion to computing device 1602, and also allow information to
be presented to the user and/or other components or devices
using various input/output devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone (e.g., for Voice recognition and/or
spoken input), a scanner, touch functionality (e.g., capacitive
or other sensors that are configured to detect physical touch),
a camera (e.g., which may employ visible or non-visible
wavelengths such as infrared frequencies to detect movement
that does not involve touch as gestures), and so forth.
Examples of output devices include a display device (e.g., a
monitor or projector), speakers, a printer, a network card,
tactile-response device, and so forth. Thus, the computing
device 1602 may be configured in a variety of ways as further
described below to support user interaction.
0177 Various techniques may be described herein in the
general context of Software, hardware elements, or program
modules. Generally, such modules include routines, pro
grams, objects, elements, components, data structures, and so
forth that perform particular tasks or implement particular
abstract data types. The terms “module.” “functionality,” and
“component’ as used herein generally represent software,

US 2014/03.68515 A1

firmware, hardware, or a combination thereof. The features of
the techniques described herein are platform-independent,
meaning that the techniques may be implemented on a variety
of commercial computing platforms having a variety of pro
CSSOS.

0.178 An implementation of the described modules and
techniques may be stored on or transmitted across some form
of computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 1602. By way of example, and not limita
tion, computer-readable media may include “computer-read
able storage media' and "computer-readable signal media.”
0179. “Computer-readable storage media' may refer to
media and/or devices that enable persistent storage of infor
mation in contrast to mere signal transmission, carrier waves,
or signals perse. Thus, computer-readable storage media do
not include signals per se. The computer-readable storage
media includes hardware such as Volatile and non-volatile,
removable and non-removable media and/or storage devices
implemented in a method or technology Suitable for storage
of information Such as computer readable instructions, data
structures, program modules, logic elements/circuits, or other
data. Examples of computer-readable storage media may
include, but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver
satile disks (DVD) or other optical storage, hard disks, mag
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other storage device, tangible
media, or article of manufacture suitable to store the desired
information and which may be accessed by a computer.
0180 “Computer-readable signal media” may refer to a
signal-bearing medium that is configured to transmit instruc
tions to the hardware of the computing device 1602, such as
via a network. Signal media typically may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal. Such as carrier waves,
data signals, or other transport mechanism. Signal media also
include any information delivery media. The term “modu
lated data signal” means a signal that has one or more of its
characteristics set or changed in Such a manner as to encode
information in the signal. By way of example, and not limi
tation, communication media include wired media Such as a
wired network or direct-wired connection, and wireless
media Such as acoustic, radio frequency (RF), infrared, and
other wireless media.

0181. As previously described, hardware elements 1610
and computer-readable media 1606 are representative of
instructions, modules, programmable device logic and/or
fixed device logic implemented in a hardware form that may
be employed in some embodiments to implement at least
Some aspects of the techniques described herein. Hardware
elements may include components of an integrated circuit or
on-chip system, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a complex
programmable logic device (CPLD), and other implementa
tions in silicon or other hardware devices. In this context, a
hardware element may operate as a processing device that
performs program tasks defined by instructions, modules,
and/or logic embodied by the hardware element as well as a
hardware device utilized to store instructions for execution,
e.g., the computer-readable storage media described previ
ously.
0182 Combinations of the foregoing may also be
employed to implement various techniques and modules

Dec. 18, 2014

described herein. Accordingly, Software, hardware, or pro
gram modules and other program modules may be imple
mented as one or more instructions and/or logic embodied on
Some form of computer-readable storage media and/or by one
or more hardware elements 1610. The computing device 1602
may be configured to implement particular instructions and/
or functions corresponding to the Software and/or hardware
modules. Accordingly, implementation of modules that are
executable by the computing device 1602 as software may be
achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
1610 of the processing system. The instructions and/or func
tions may be executable/operable by one or more articles of
manufacture (for example, one or more computing devices
1602 and/or processing systems 1604) to implement tech
niques, modules, and examples described herein.
0183. As further illustrated in FIG.16, the example system
1600 enables ubiquitous environments for a seamless user
experience when running applications on a personal com
puter (PC), a television device, and/or a mobile device. Ser
vices and applications run Substantially similar in all three
environments for a common user experience when transition
ing from one device to the next while utilizing an application,
playing a video game, watching a video, and so on.
0184. In the example system 1600, multiple devices are
interconnected through a central computing device. The cen
tral computing device may be local to the multiple devices or
may be located remotely from the multiple devices. In one
embodiment, the central computing device may be a cloud of
one or more server computers that are connected to the mul
tiple devices through a network, the Internet, or other data
communication link.

0185. In one embodiment, this interconnection architec
ture enables functionality to be delivered across multiple
devices to provide a common and seamless experience to a
user of the multiple devices. Each of the multiple devices may
have different physical requirements and capabilities, and the
central computing device uses a platform to enable the deliv
ery of an experience to the device that is both tailored to the
device and yet common to all devices. In one embodiment, a
class of target devices is created and experiences are tailored
to the generic class of devices. A class of devices may be
defined by physical features, types of usage, or other common
characteristics of the devices.

0186. In various implementations, the computing device
1602 may assume a variety of different configurations, such
as for computer 1614, mobile 1616, and television 1618 uses.
Each of these configurations includes devices that may have
generally different constructs and capabilities, and thus the
computing device 1602 may be configured according to one
or more of the different device classes. For instance, the
computing device 1602 may be implemented as the computer
1614 class of a device that includes a personal computer,
desktop computer, a multi-screen computer, laptop computer,
netbook, and so on.
0187. The computing device 1602 may also be imple
mented as the mobile 1616 class of device that includes
mobile devices. Such as a mobile phone, portable music
player, portable gaming device, a tablet computer, a multi
screen computer, and so on. The computing device 1602 may
also be implemented as the television 1618 class of device
that includes devices having or connected to generally larger

US 2014/03.68515 A1

screens in casual viewing environments. These devices
include televisions, set-top boxes, gaming consoles, and so
O

0188 The techniques described herein may be supported
by these various configurations of the computing device 1602
and are not limited to the specific examples of the techniques
described herein. For example, functionalities discussed with
reference to the process manager module 110 and/or the
graphics module 112 may be implemented all or in part
through use of a distributed system, such as over a "cloud
1620 via a platform 1622 as described below.
0189 The cloud 1620 includes and/or is representative of
a platform 1622 for resources 1624. The platform 1622
abstracts underlying functionality of hardware (e.g., servers)
and software resources of the cloud 1620. The resources 1624
may include applications and/or data that can be utilized
while computer processing is executed on servers that are
remote from the computing device 1602. Resources 1624 can
also include services provided over the Internet and/or
through a subscriber network, such as a cellular or Wi-Fi
network.

0190. The platform 1622 may abstract resources and func
tions to connect the computing device 1602 with other com
puting devices. The platform 1622 may also serve to abstract
Scaling of resources to provide a corresponding level of scale
to encountered demand for the resources 1624 that are imple
mented via the platform 1622. Accordingly, in an intercon
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
1600. For example, the functionality may be implemented in
part on the computing device 1602 as well as via the platform
1622 that abstracts the functionality of the cloud 1620.
0191 Discussed herein are a number of methods that may
be implemented to perform techniques discussed herein.
Aspects of the methods may be implemented in hardware,
firmware, or software, or a combination thereof. The methods
are shown as a set of steps that specify operations performed
by one or more devices and are not necessarily limited to the
orders shown for performing the operations by the respective
blocks. Further, an operation shown with respect to a particu
lar method may be combined and/or interchanged with an
operation of a different method in accordance with one or
more implementations. Aspects of the methods can be imple
mented via interaction between various entities discussed
above with reference to the environment 100.

CONCLUSION

0192 Techniques for coalescing graphics operations are
described. Although embodiments are described in language
specific to structural features and/or methodological acts, it is
to be understood that the embodiments defined in the
appended claims are not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed embodiments.

What is claimed is:
1. A system comprising:
at least one processor; and
one or more computer-readable storage media including

instructions stored thereon that, responsive to execution
by the at least one processor, cause the system perform
operations including:

Dec. 18, 2014

determining that multiple graphics operations generated
via multiple different processing operations are to be
applied to a graphical element; and

coalescing the multiple graphics operations into a com
bined graphics operation that is executable via a
single render operation to the graphical element.

2. A system as recited in claim 1, wherein the graphical
element comprises a graphical user interface (GUI), and
wherein said coalescing comprises applying data from the
multiple graphics operations to a data structure for the GUI.

3. A system as recited in claim 1, wherein said coalescing
comprises combining visual state information from each of
the multiple graphics operations into a combined visual state
for the graphical element.

4. A system as recited in claim 1, wherein said coalescing
comprises generating a synchronization point for the com
bined graphics operation, and emitting the synchronization
point for processing by a rendering thread.

5. A system as recited in claim 1, wherein said coalescing
is implemented via a first thread, and wherein the operations
further include rendering the combined graphics operation
via a second thread.

6. A system as recited in claim 5, wherein the operations
further comprise executing the first thread via a first processor
core, and executing the second thread via a second processor
COC.

7. A system as recited in claim 1, wherein the multiple
graphics operations are based on user input to the graphical
element.

8. A system as recited in claim 1, wherein said coalescing
is performed via a first thread, and wherein the operations
further include executing the first thread to perform further
processing after said coalescing and without waiting for a
second thread to process the combined graphics operation.

9. A system as recited in claim 1, wherein the multiple
graphics operations are represented by a patch for a node of a
display tree for the graphical element, and wherein said coa
lescing comprises applying the patch to the node.

10. One or more computer-readable storage media com
prising instructions stored thereon that, responsive to execu
tion by a computing device, cause the computing device to
perform operations comprising:

generating a patch that describes a change to a visual state
of a graphical element;

determining that the change to the visual state of the
graphical element is to be applied to the graphical ele
ment; and

updating a data structure for the graphical element based
on the patch Such that the graphical element is render
able based on the updated data structure.

11. One or more computer-readable storage media as
recited in claim 10, wherein the data structure comprises a
display tree, the patch is generated for a node of the display
tree, and said updating comprises updating the node based on
state information from the patch.

12. One or more computer-readable storage media as
recited in claim 10, the operations further comprising updat
ing the patch to reflect a Subsequent change to the visual state
of the graphical element prior to updating the data structure.

13. One or more computer-readable storage media as
recited in claim 12, wherein said updating the patch com
prises combining state information for the change in the
visual state and the Subsequent change to the visual state.

US 2014/03.68515 A1

14. One or more computer-readable storage media as
recited in claim 10, wherein said generating is performed
while a rendering thread is rendering the graphical element
based on a previous version of the data structure.

15. One or more computer-readable storage media as
recited in claim 10, wherein the said updating is in response to
a synchronization point indicating that the patch is to be
applied to generate the updated data structure, and that the
graphical element is to be rendered based on the updated data
Structure.

16. One or more computer-readable storage media as
recited in claim 10, wherein said generating is performed via
a first thread, and wherein the operations further comprise
rendering via a second thread the graphical element based on
the updated data structure.

17. One or more computer-readable storage media as
recited in claim 10, wherein the operations further comprise:

rendering the graphical element based on the updated data
structure; and

generating one or more different patches for the updated
data structure and without affecting the updated data
structure during said rendering.

Dec. 18, 2014

18. A computer-implemented method, comprising:
executing via a first processor core a first thread to generate

patches that describe changes to a visual state of a
graphical element; and

executing via a second processor core a second thread to
apply the patches to update a data structure for the
graphical element, and render the graphical element
based on the updated data structure.

19. A method as described in claim 18, wherein the data
structure comprises a display tree for the graphical element,
and wherein said executing the second thread comprises
applying the patches to one or more nodes of the display tree.

20. A method as described in claim 18, wherein the patches
correspond to different graphics operations to be applied to
the graphical element, and wherein said executing the second
thread to apply the patches comprises coalescing the different
graphics operations into a combined graphics operation to be
rendered via the second thread.

k k k k k

