US 20130063448A1

a2y Patent Application Publication o) Pub. No.: US 2013/0063448 A1

a9 United States

Fields, JR. et al.

43) Pub. Date: Mar. 14, 2013

(54) ALIGNING SCRIPT ANIMATIONS WITH
DISPLAY REFRESH

(71) Applicant: Microsoft Corporation, Redmond, WA
(US)

(72) Inventors: M. David Fields, JR., Kirkland, WA
(US); Cenk Ergan, Bellevue, WA (US);
Qiang Chen, Sammamish, WA (US);
Michael D. Decker, Bellevue, WA (US);
Katerina V. Sedova, Seattle, WA (US);
Karen Elizabeth Parker Anderson,
Sammamish, WA (US); Jatinder Singh
Mann, Redmond, WA (US); Walter V.
von Koch, Seattle, WA (US); Jason J.
Weber, Medina, WA (US)

(73) Assignee: MICROSOFT CORPORATION,
Redmond, WA (US)

(21) Appl. No.: 13/653,275

(22) TFiled: Oct. 16,2012

Related U.S. Application Data

(63) Continuation of application No. 13/229,618, filed on
Sep. 9, 2011.

Publication Classification

(51) Int.CL

GOG6T 13/00 (2011.01)
(52) US.CL

1673 G 345/473
(57) ABSTRACT

Various embodiments align callbacks to a scripting compo-
nent that enable the scripting component to update animation,
with a system’s refresh notifications. Specifically, an appli-
cation program interface (API) is provided and implemented
in a manner that generates and issues a callback to the script-
ing component when the system receives a refresh notifica-
tion. This provides the scripting component with a desirable
amount of time to run before the next refresh notification.

f100

116~\
" A\N)
- ~
Photos
Shared
[I —— -

N I
\\\ ///
N L
. L

\\
N
\\ e
~. L
~ -
~ -

-,
N

(Computing Device 102

Browser
104

Gesture Module
105

Interfaces
107

Application Program

requestAnimationFrame()

~
~

Patent Application Publication = Mar. 14,2013 Sheet 1 of 6 US 2013/0063448 A1

100
oo /

-
7

D

Photos

Shared

f Computing Device 102)

Browser
104

Gesture Module

105

\\

4 . -7

Application Program e
Interfaces . requestAnimationFrame()

107 N

4 ~

(.

Fig. 1

Patent Application Publication = Mar. 14,2013 Sheet 2 of 6 US 2013/0063448 A1

200 ~\

Platform 210
Web Services _21_2)

Computing Device 102

Browser —
104 Application Program
— Interfaces

Gesture Module 107
105

A

N
N

Computer 204 [Television 206

PC, laptops,
netbooks

STB, Xbox, TVs

Fig. 3

Patent Application Publication = Mar. 14,2013 Sheet 4 of 6 US 2013/0063448 A1

400 —, 402 — 404 — 406 408 —, 410 412
I N U N W S W N\

. - Object ; : View
Parser | | Script Model Format ELHYOUt Display Controller
1)
> |
[2)
>

¢
Y

Buisseo0id 1noke

0

=EIY
Ae|dsiq Jepuay

Fig. 4 -

Patent Application Publication = Mar. 14,2013 Sheet S of 6 US 2013/0063448 A1

Script Callback
Component Component

registration

500 —. |) 502 — | .
_\ Register for callback ____________1 Receive callback J

N 504 — l
I No e
.~ Display -
No callback }je— Refresh?
Yes
510 —\ """""""""""""""""""""""""""""""""""" 50—/
Receive callback Callback script component

|

512 —\ Perform animation
processing

Fig. 5

Patent Application Publication = Mar. 14,2013 Sheet 6 of 6 US 2013/0063448 A1

(" ~\
Device 600
- “\
Computer-Readable Media 614 4)
- N N Commuplcatlon
Device Operating Devices
Applications System 602
618 620 \ y
\ @* AN '
" N Device
Gesture Capture Interface Data
Driver Application 604
624 622 N
\\ J \ J
h Data
Callback APls Input(s)
(Browser 625) [627 606
N \ y
e _ ™~
Pgtoggi?glg Communication
Storage 612 Interface(s)
Media L — 608
616 A
e ™\ s ™
Audio
System Processor(s)
N
Audio / Video ‘:}\ 628 L 610
Input / Output
r N
626 — Display
System
630
\
N\ y

US 2013/0063448 Al

ALIGNING SCRIPT ANIMATIONS WITH
DISPLAY REFRESH

RELATED APPLICATION

[0001] This application is a continuation of and claims
priority under 35 U.S.C. §120 to U.S. patent application Ser.
No. 13/229,618, filed on Sep. 9, 2011, the disclosure of which
is incorporated by reference herein in its entirety.

BACKGROUND

[0002] Animations in web browsers typically come in two
forms: native, declarative ones, such as the <animate> ele-
ment in Scalable Vector Graphics (SVG), and those that are
implemented imperatively in script, such as Javascript. These
script-based animations are most often performed by sched-
uling a callback to perform custom script based animations.
Typically, callbacks are registered using either a setTimeout(
) method that specifies a particular time value, in millisec-
onds, when a callback is desired, or a setlnterval() method
that specifies an interval over which callbacks are desired to
be received. The callbacks are used by a Javascript engine to
execute animation code to update an object model so that a
new display can be rendered by a rendering engine.

[0003] There are several challenges with this approach
including over-notification and unnecessarily high power
consumption. Specifically, if callbacks occur too rapidly,
some of the work that is done by the script engine will not be
rendered because it will have been replaced with more sub-
sequent work. This leads to power inefficiencies stemming
from unnecessary work and choppy animations. Specifically,
a disadvantage of this approach is that the author of the
animation script has no idea what the ideal frequency for
updating their animation is. Instead, the easiest way for the
author is to simply call setTimeout() with a very small value,
which in practice, will be clamped by the system to some
minimum time such as 10 ms. It is not likely that 100 updates
per second are needed for the animation, especially ifthe page
is in a background tab or the browser window is minimized.

SUMMARY

[0004] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter.

[0005] Various embodiments align callbacks to a scripting
component that enable the scripting component to update
animation, with a system’s refresh notifications. Specifically,
anapplication program interface (API) is provided and imple-
mented in a manner that generates and issues a callback to the
scripting component when the system receives a refresh noti-
fication. This provides the scripting component with a desir-
able amount of time to run before the next refresh notification.
Efficiencies are gained by allowing an application, such as a
web browser and others, to determine when the scripting
component receives its callback, rather than relying on speci-
fied callback time values or intervals. This can reduce power
consumption by avoiding unnecessary work and can reduce
visual choppiness in an animation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The detailed description is described with reference
to the accompanying figures. The use of the same reference

Mar. 14, 2013

numbers in different instances in the description and the
figures may indicate similar or identical items.

[0007] FIG. 1 is an illustration of an environment in an
example implementation in accordance with one or more
embodiments.

[0008] FIG. 2 is an illustration of a system in an example
implementation showing FIG. 1 in greater detail.

[0009] FIG. 3 is a diagram that illustrates one aspect of
callbacks that can occur relative to a system’s refresh rate.
[0010] FIG. 4 is an activity diagram in accordance with one
or more embodiments.

[0011] FIG. 5 is a flow diagram that describes steps in a
method in accordance with one or more embodiments.
[0012] FIG. 6 illustrates an example computing device that
can be utilized to implement various embodiments described
herein.

DETAILED DESCRIPTION
[0013] Overview
[0014] Various embodiments align callbacks to a scripting

component that enable the scripting component to update
animation, with a system’s refresh notifications. Specifically,
anapplication program interface (API) is provided and imple-
mented in a manner that generates and issues a callback to the
scripting component when the system receives a refresh noti-
fication. This provides the scripting component with a desir-
able amount of time to run before the next refresh notification.
Efficiencies are gained by allowing an application, such as a
web browser and others, to determine when the scripting
component receives its callback, rather than relying on speci-
fied callback time values or intervals. This can reduce power
consumption by avoiding unnecessary work and can reduce
visual choppiness in an animation.

[0015] In the following discussion, an example environ-
ment is first described that is operable to employ the tech-
niques described herein. Example illustrations of the various
embodiments are then described, which may be employed in
the example environment, as well as in other environments.
Accordingly, the example environment is not limited to per-
forming the described embodiments and the described
embodiments are not limited to implementation in the
example environment.

[0016] Example Environment

[0017] FIG. 1 is anillustration of an environment 100 in an
example implementation that is operable to employ power
efficient callback patterns described in this document. The
illustrated environment 100 includes an example of a com-
puting device 102 that may be configured in a variety of ways.
For example, the computing device 102 may be configured as
a traditional computer (e.g., a desktop personal computer,
laptop computer, and so on), a mobile station, an entertain-
ment appliance, a set-top box communicatively coupled to a
television, a wireless phone, a netbook, a game console, a
handheld device, and so forth as further described in relation
to FIG. 2. Thus, the computing device 102 may range from
full resource devices with substantial memory and processor
resources (e.g., personal computers, game consoles) to a low-
resource device with limited memory and/or processing
resources (e.g., traditional set-top boxes, hand-held game
consoles). The computing device 102 also includes software
that causes the computing device 102 to perform one or more
operations as described below.

[0018] Computing device 102 includes a web browser 104
to provide functionality as described in this document.

US 2013/0063448 Al

Although a web browser is utilized as an example application
that can utilize the embodiments described herein, applica-
tions other than web browsers can be employed without
departing from the spirit and scope of the claimed subject
matter. The web browser can be implemented in connection
with any suitable type of hardware, software, firmware or
combination thereof. In at least some embodiments, the web
browser is implemented in software that resides on some type
of tangible, computer-readable storage medium examples of
which are provided below.

[0019] Web browser 104 is representative of functionality
that enables the user to browse to different web of sites and
consume content associated with those websites.

[0020] Computing device 102 can also include a gesture
module 105 that recognizes gestures that can be performed by
one or more fingers, and causes operations to be performed
that correspond to the gestures. The gestures may be recog-
nized by module 105 in a variety of different ways. For
example, the gesture module 105 may be configured to rec-
ognize a touch input, such as a finger of a user’s hand 1064 as
proximal to display device 108 of the computing device 102
using touchscreen functionality. Module 105 can be utilized
to recognize single-finger gestures and bezel gestures, mul-
tiple-finger/same-hand gestures and bezel gestures, and/or
multiple-finger/different-hand gestures and bezel gestures.
[0021] The computing device 102 may also be configured
to detect and differentiate between a touch input (e.g., pro-
vided by one or more fingers of the user’s hand 1064) and a
stylus input (e.g., provided by a stylus 116). The differentia-
tion may be performed in a variety of ways, such as by
detecting an amount of the display device 108 that is con-
tacted by the finger of the user’s hand 106 versus an amount
of'the display device 108 that is contacted by the stylus 116.
[0022] Thus, the gesture module 105 may support a variety
of different gesture techniques through recognition and lever-
age of a division between stylus and touch inputs, as well as
different types of touch inputs.

[0023] In addition, the computing device 102 includes a
plurality of Application Program Interfaces (APIs) 107 that
can be used to register for callbacks as will be described
below. In this particular example, the APIs include a request-
AnimationFrame() method.

[0024] The requestAnimationFrame()method can be used
to align callbacks to a scripting component that enable the
scripting component to update animation, with a system’s
refresh notifications. Specifically, the requestAnimation-
Frame() method is implemented in a manner that allows a
callback to be specified and issued to the scripting component
when the system receives a refresh notification. This provides
the scripting component with a desirable amount of time to
run before the next refresh notification.

[0025] FIG. 2 illustrates an example system 200 showing
the browser 104, gesture module 105, and APIs 107 as being
implemented in an environment where multiple devices are
interconnected through a central computing device. The cen-
tral computing device may be local to the multiple devices or
may be located remotely from the multiple devices. In one
embodiment, the central computing deviceis a “cloud” server
farm, which comprises one or more server computers that are
connected to the multiple devices through a network or the
Internet or other means.

[0026] In one embodiment, this interconnection architec-
ture enables functionality to be delivered across multiple
devices to provide a common and seamless experience to the

Mar. 14, 2013

user of the multiple devices. Each of the multiple devices may
have different physical requirements and capabilities, and the
central computing device uses a platform to enable the deliv-
ery of an experience to the device that is both tailored to the
device and yet common to all devices. In one embodiment, a
“class” of target device is created and experiences are tailored
to the generic class of devices. A class of device may be
defined by physical features or usage or other common char-
acteristics of the devices. For example, as previously
described the computing device 102 may be configured in a
variety of different ways, such as for mobile 202, computer
204, and television 206 uses. Each ofthese configurations has
a generally corresponding screen size and thus the computing
device 102 may be configured as one of these device classes
in this example system 200. For instance, the computing
device 102 may assume the mobile 202 class of device which
includes mobile telephones, music players, game devices,
and so on. The computing device 102 may also assume a
computer 204 class of device that includes personal comput-
ers, laptop computers, netbooks, and so on. The television
206 configuration includes configurations of device that
involve display in a casual environment, e.g., televisions,
set-top boxes, game consoles, and so on. Thus, the techniques
described herein may be supported by these various configu-
rations of the computing device 102 and are not limited to the
specific examples described in the following sections.
[0027] Cloud 208 is illustrated as including a platform 210
for web services 212. The platform 210 abstracts underlying
functionality of hardware (e.g., servers) and software
resources of the cloud 208 and thus may act as a “cloud
operating system.” For example, the platform 210 may
abstract resources to connect the computing device 102 with
other computing devices. The platform 210 may also serve to
abstract scaling of resources to provide a corresponding level
of scale to encountered demand for the web services 212 that
are implemented via the platform 210. A variety of other
examples are also contemplated, such as load balancing of
servers in a server farm, protection against malicious parties
(e.g., spam, viruses, and other malware), and so on.

[0028] Thus, the cloud 208 is included as a part of the
strategy that pertains to software and hardware resources that
are made available to the computing device 102 via the Inter-
net or other networks.

[0029] The gesture techniques supported by the gesture
module may be detected using touchscreen functionality in
the mobile configuration 202, track pad functionality of the
computer 204 configuration, detected by a camera as part of
support of a natural user interface (NUI) that does not involve
contact with a specific input device, and so on. Further, per-
formance of the operations to detect and recognize the inputs
to identify a particular gesture may be distributed throughout
the system 200, such as by the computing device 102 and/or
the web services 212 supported by the platform 210 of the
cloud 208.

[0030] Generally, any of the functions described herein can
be implemented using software, firmware, hardware (e.g.,
fixed logic circuitry), manual processing, or a combination of
these implementations. The terms “module,” “functionality,”
and “logic” as used herein generally represent software, firm-
ware, hardware, or a combination thereof. In the case of a
software implementation, the module, functionality, or logic
represents program code that performs specified tasks when
executed on or by a processor (e.g., CPU or CPUs). The
program code can be stored in one or more computer readable

US 2013/0063448 Al

memory devices. The features of the gesture techniques
described below are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

[0031] In the discussion that follows, various sections
describe example embodiments. A section entitled “Aligning
Script Callbacks with Refresh Notifications” describes how
script callbacks can be aligned with refresh notifications in
accordance with one or more embodiments. Next, a section
entitled “Example requestAnimationFrame Interface”
describes an example interface in accordance with one or
more embodiments. Following this, a section entitled
“Example Activity Diagram™ describes an example activity
diagram in accordance with one or more embodiments. Next,
a Section Entitled “Example Method” describes an example
method in accordance with one or more embodiments. Last, a
section entitled “Example Device” describes aspects of an
example device that can be utilized to implement one or more
embodiments.

[0032] Having described example operating environments
in which the inventive techniques can be utilized, consider
now a discussion of one or more embodiments in which script
callbacks can be aligned with refresh notifications in accor-
dance with one or more embodiments.

[0033] Aligning Script Callbacks with Refresh Notifica-
tions
[0034] As noted above, using the requestAnimationFrame(

) API, web developers can schedule animations to reduce
power consumption and choppiness. For example, anima-
tions today generally occur even when a web site is in a
background tab, minimized, or otherwise not visible, thus
wasting precious battery life. Animations today are not gen-
erally aligned with the display’s refresh rate, causing chop-
piness in the animation. As an example, consider the follow-
ing in connection with FIG. 3.

[0035] Mostanimations use a JavaScript timer resolution of
less than 16.7 ms to draw animations, even though most
monitors can only display at 16.7 ms periods (at 60 Hz fre-
quency). FIG. 3 illustrates two graphs, generally at 300,
which illustrate aspects of this situation.

[0036] Specifically, graph 302 represents the 16.7 ms dis-
play monitor frequency. Graph 304 represents a typical set-
Timeout or setlnterval of 10 ms. In this case, the end user will
never see every third draw (illustrated by the overly-bold
arrows in graph 304) because another draw will occur before
the display refreshes. This overdrawing results in choppy
animations as every third frame is lost. Reducing the timer
resolution can also negatively impact battery life, as will be
appreciated by the skilled artisan.

[0037] Further, without knowledge of page visibility, ani-
mations are drawn even when the user cannot view them, as
when a page is minimized or in a background tab. This leads
to further inefficiencies and reduced battery life.

[0038] Example requestAnimationFrame Interface

[0039] As but one example implementation of a request-
AnimationFrame interface, consider the following:

long requestAnimationFrame(in FrameRequestCallback
callback)

void cancelRequestAnimationFrame (in long handle)

[0040] The requestAnimationFrame() method calls the
callback function in connection with a display refresh, when
the page is visible. This effectively aligns callbacks to a
scripting component that enable the scripting component to
update animation, with a system’s refresh notifications. This

Mar. 14, 2013

provides the scripting component with a desirable amount of
time to run before the next refresh notification. Efficiencies
are gained by allowing a web browser (or, in other embodi-
ments, other applications) to determine when the scripting
component receives its callback, rather than relying on speci-
fied callback time values or intervals. This can reduce power
consumption by avoiding unnecessary work, e.g. layout work
that would otherwise not be seen as described above, and can
reduce visual choppiness in an animation.

[0041] In one or more embodiments, when the page is not
visible, as determined by checking if the page is not at least
partially visible on at least one screen, this function does not
call the callback. For example, if the page is on a background
tab, the associated window is minimized or other applications
are in the forefront covering the associated window entirely,
this API will not return the callback. In one or more embodi-
ments, if the associated window containing the page is mini-
mized but a thumbnail preview is shown, this API will return
the callback.

[0042] In the illustrated and described embodiment,
requestAnimationFrame schedules a single callback, like set-
Timeout(). If a subsequent animation frame is desired, then
requestAnimationFrame is called again from within the call-
back.

[0043] The cancelRequestAnimationFrame() function
takes the handle to the requestAnimationFrame timer and
allows a web developer to cancel the scheduled update. This
function is similar in nature to the clearTimeout() function.

[0044] One example of using the requestAnimationFrame
API, as compared with the setTimeout API is as follows:

setTimeout()

var PERIOD =1;
function init() {
setTimeout(draw, PERIOD);

¥

function draw() {
//Draw to the screen
setTimeout(draw, PERIOD);

requestFrameAnimation

function init() {
window.requestAnimationFrame(draw);

function draw() {
//Draw to the screen
window.requestAnimationFrame(draw);

[0045] Notice in the setTimeout() API, a function and a
time period are specified. In the requestAnimationFrame()
API, however, no such period is specified. This is because the
associated callback is aligned with the display refresh so the
browser effectively decides when to make the callback to the
scripting component.

[0046] Having considered an example API, consider now
an example, simplified activity diagram that illustrates
aspects of one embodiment.

US 2013/0063448 Al

[0047] Example Activity Diagram

[0048] FIG. 4 illustrates a simplified example activity dia-
gram that includes multiple different components in a layout
pipeline in accordance with one or more embodiments. In this
particular example, components within the layout pipeline
include a parser 400, a script component 402, an object model
404, a format component 406, a layout component 408, a
display component 410, and a view controller component
412. The layout pipeline can comprise part of a web browser.
Alternately or additionally, the layout pipeline can comprise
a standalone system or can comprise part of an application
other than a web browser. Calls that are made between the
various components are represented, generally, by encircled
numbers. The calls, in this embodiment, occur in the order in
which they appear numerically. However, such need not nec-
essarily be the case, particularly with respect to the callback
described below. For the sake of brevity, some of the calls and
callbacks that are made between the various illustrative com-
ponents are omitted.

[0049] In the illustrated and described embodiment, parser
400 is configured to receive and parse HTML content asso-
ciated with a webpage. The parser processes the HTML
which includes a number of HTML elements and, from the
HTML elements builds a Document Object Model (DOM),
herein referred to as simply an “object model.”

[0050] Script component 402 is configured to interpret
scripting source code and execute the script accordingly. In
the illustrated and described embodiment, script component
402 comprises a JavaScript component.

[0051] Object model 404, in the illustrated and described
embodiment, is a platform- and language-neutral interface
that allows programs and scripts to dynamically access and
update content, structure, and the style of associated docu-
ments, such as web pages. The documents can be further
processed and the results of that processing can be incorpo-
rated back into a presented page.

[0052] Format component 406 is configured as a format
cache to hold specified values which have a visual impact in
preparation for the layout operations. For example, the format
component 406 can hold HTML and CSS values that affect
visual aspects of the layout operations.

[0053] Layout component 408 is configured to iterate over
all the nodes of the object model and create a display tree.
Creation of the display tree takes place through what is
referred to in this document as “layout processing.” Layout
processing can be resource intensive. Layout processing
includes processing information from the object model, such
as HTML, XML, image files and the like, as well as format-
ting information such as CSS, XSL, and the like, and ascer-
taining where and how these elements are to be rendered on a
computing device’s display.

[0054] Display component 410 is configured to process the
display tree and display or render the formatted content onto
a computing device’s display.

[0055] View controller component 412 is configured to
cause the display component to refresh the screen by render-
ing the display tree. This is done, in part, by issuing a refresh
notification or call to the layout component 408, as described
below.

[0056] In operation, content including HTML and CSS
content are received, in this particular example, by the web
browser and parsed by parser 400. Through a series of calls
from the parser 400 to the object model component 404,
illustrated at “1”, the object model is created. When the object

Mar. 14, 2013

model is created, the view controller 412 is notified, illus-
trated at “2”, that the object model’s content is to be used to
render content at some point in the future.

[0057] When the parser completes its operations, an event
is fired (not shown) to indicate that the status of the object
model is complete. The object model 404 calls the script
engine 402, illustrated at “3”, to start the script engine. The
script engine can then call requestAnimationFrame() at “4”
to inform the view controller that it wishes to be notified in
connection with a display refresh.

[0058] The view controller then calls the layout component
408, as illustrated at “5” to indicate that content is ready for
rendering. At this point, layout processing can occur. When
layout processing starts, the layout component 408 calls the
object model, as illustrated at “6” so that the object model can
recompute the various formatting information for the HTML
and CSS for use in layout processing. The layout component
408 then calls the object model, as illustrated at “7” to retrieve
the computed formatting information for use in its layout
operations.

[0059] Atthis point, the layout component 408 iterates over
all of the nodes of the object model and updates the layout,
thus building a display tree. The layout component 408 then
calls the display component 410, as illustrated at “8” to
inform the display component that the display tree has been
completed and is ready for rendering. Now, the system waits
until the display component receives a call, as illustrated at
“9” from the view controller 412 indicating that it is to render
the display tree and refresh the display. The display compo-
nent 410 can now render the display tree to screen. In con-
nection with the display refresh issued at “9”, a request ani-
mation event fires (not shown) and the view controller 412
can issue a callback at “11” to the script component 502 so
that it can run associated animation script and update the
object model accordingly. Updates to the object model will
used in the next display refresh.

Example Method

[0060] FIG. 5 is a flow diagram that describes steps in a
method in accordance with one or more embodiments. The
method can be implemented in connection with any suitable
hardware, software, firmware, or combination thereof. In par-
ticular, the method can be implemented in connection with
any system in which callbacks are typically utilized. Such
systems can include, by way of example and not limitation,
browser systems and/or environments in which JavaScript is
employed. In this particular example, the method is divided
into two columns, one labeled “Script Component” and the
other labeled “Callback Component”. The script component
can comprise any suitable script component including, by
way of example and not limitation, a JavaScript component.
The callback component can comprise any suitable callback
component that can be utilized to call the JavaScript compo-
nent, as described in this document. In the FIG. 4 activity
diagram, the callback component resided in the form of the
view controller 412. Other components can provide callback
functionality without departing from the spirit and scope of
the claimed subject matter. For example, the callback notifi-
cation may reside directly inside the script component, may
be coordinated through the layout component, or may even
exist in direct hardware management layers or hardware
abstraction software layers.

[0061] Step 500 registers for a callback. This step can be
performed in any suitable way. For example, this step can be

US 2013/0063448 Al

performed by calling a suitably-configured API, such as the
API described above, and providing a callback function
which is to be called. In addition, this step can be performed
independent of, and without providing an associated time
period or interval at which a callback is to occur. Step 502
receives the callback registration. Step 504 ascertains
whether there is to be or has been a display refresh. In asso-
ciation with a display refresh not being ascertained in step
504, step 506 does not callback the script component. In
association with a display refresh being ascertained in step
504, step 508 calls back the script component. This step can
be performed in any suitable way. For example, the callback
issued by the callback component can be one that is associ-
ated with initiating or causing the script component to per-
form animation processing. Further, in at least some embodi-
ment, prior to issuing the callback, the system may throttle the
number of callbacks to improve power consumption and
visual quality even further.

[0062] Step 510 receives the callback from the callback
component and step 512 performs animation processing
responsive to receiving the callback.

[0063] Having described various embodiments in which
callbacks to a scripting component that enable the scripting
component to update animation and be aligned with a sys-
tem’s refresh notifications, consider now an example device
that can be utilized to implement one or more embodiments.
[0064] Example Device

[0065] FIG. 6 illustrates various components of an example
device 600 that can be implemented as any type of portable
and/or computer device as described with reference to FIGS.
1 and 2 to implement the embodiments described herein.
Device 600 includes communication devices 602 that enable
wired and/or wireless communication of device data 604
(e.g., received data, data that is being received, data scheduled
for broadcast, data packets of the data, etc.). The device data
604 or other device content can include configuration settings
of the device, media content stored on the device, and/or
information associated with a user of the device. Media con-
tent stored on device 600 can include any type of audio, video,
and/or image data. Device 600 includes one or more data
inputs 606 via which any type of data, media content, and/or
inputs can be received, such as user-selectable inputs, mes-
sages, music, television media content, recorded video con-
tent, and any other type of audio, video, and/or image data
received from any content and/or data source.

[0066] Device 600 also includes communication interfaces
608 that can be implemented as any one or more of a serial
and/or parallel interface, a wireless interface, any type of
network interface, a modem, and as any other type of com-
munication interface. The communication interfaces 608 pro-
vide a connection and/or communication links between
device 600 and a communication network by which other
electronic, computing, and communication devices commu-
nicate data with device 600.

[0067] Device 600 includes one or more processors 610
(e.g., any of microprocessors, controllers, and the like) which
process various computer-executable or readable instructions
to control the operation of device 600 and to implement the
embodiments described above. Alternatively or in addition,
device 600 can be implemented with any one or combination
of hardware, firmware, or fixed logic circuitry that is imple-
mented in connection with processing and control circuits
which are generally identified at 612. Although not shown,
device 600 can include a system bus or data transfer system

Mar. 14, 2013

that couples the various components within the device. A
system bus can include any one or combination of different
bus structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.
[0068] Device 600 also includes computer-readable media
614, such as one or more memory components, examples of
which include random access memory (RAM), non-volatile
memory (e.g., any one or more of a read-only memory
(ROM), flash memory, EPROM, EEPROM, etc.), and a disk
storage device. A disk storage device may be implemented as
any type of magnetic or optical storage device, such as a hard
disk drive, a recordable and/or rewriteable compact disc
(CD), any type of a digital versatile disc (DVD), and the like.
Device 600 can also include a mass storage media device 616.
[0069] Computer-readable media 614 provides data stor-
age mechanisms to store the device data 604, as well as
various device applications 618 and any other types of infor-
mation and/or data related to operational aspects of device
600. For example, an operating system 620 can be maintained
as a computer application with the computer-readable media
614 and executed on processors 610. The device applications
618 can include a device manager (e.g., a control application,
software application, signal processing and control module,
code that is native to a particular device, a hardware abstrac-
tion layer for a particular device, etc.), as well as other appli-
cations that can include, web browsers, image processing
applications, communication applications such as instant
messaging applications, word processing applications and a
variety of other different applications. The device applica-
tions 618 also include any system components or modules to
implement embodiments of the techniques described herein.
In this example, the device applications 618 include an inter-
face application 622 and a gesture-capture driver 624 that are
shown as software modules and/or computer applications.
The gesture-capture driver 624 is representative of software
that is used to provide an interface with a device configured to
capture a gesture, such as a touchscreen, track pad, camera,
and so on. Alternatively or in addition, the interface applica-
tion 622 and the gesture-capture driver 624 can be imple-
mented as hardware, software, firmware, or any combination
thereof. In addition, computer readable media 614 can
include a web browser 626 that functions as described above,
as well as callback APIs 627 that function as described above.
[0070] Device 600 also includes an audio and/or video
input-output system 626 that provides audio data to an audio
system 628 and/or provides video data to a display system
630. The audio system 628 and/or the display system 630 can
include any devices that process, display, and/or otherwise
render audio, video, and image data. Video signals and audio
signals can be communicated from device 600 to an audio
device and/or to a display device via an RF (radio frequency)
link, S-video link, composite video link, component video
link, DVI (digital video interface), analog audio connection,
or other similar communication link. In an embodiment, the
audio system 628 and/or the display system 630 are imple-
mented as external components to device 600. Alternatively,
the audio system 628 and/or the display system 630 are imple-
mented as integrated components of example device 600.

CONCLUSION

[0071] Various embodiments align callbacks to a scripting
component that enable the scripting component to update
animation, with a system’s refresh notifications. Specifically,

US 2013/0063448 Al

anapplication program interface (API) is provided and imple-
mented in a manner that generates and issues a callback to the
scripting component when the system receives a refresh noti-
fication. This provides the scripting component with a desir-
able amount of time to run before the next refresh notification.
Efficiencies are gained by allowing an application, such as a
web browser and others, to determine when the scripting
component receives its callback, rather than relying on speci-
fied callback time values or intervals. This can reduce power
consumption by avoiding unnecessary work and can reduce
visual choppiness in an animation.

[0072] Although the embodiments have been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the embodiments defined in
the appended claims are not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed embodiments.

What is claimed is:

1. A computer-implemented method comprising;

receiving a callback registration associated with animation

that is to occur within an application; and

in association with a display refresh, calling back a script

component effective to cause the script component to
perform animation processing.

2. The method of claim 1, wherein receiving the callback
registration comprises receiving a callback registration that
does not specity an associated time period or interval.

3. The method of claim 1, wherein prior to said calling
back, ascertaining whether there is to be a display refresh and,
if so, performing said calling back.

4. The method of claim 1, wherein prior to said calling
back, ascertaining whether there has been a display refresh
and, if so, performing said calling back.

5. The method of claim 1, wherein said calling back is
performed by a view controller in a layout pipeline.

6. The method of claim 1 further comprising ascertaining
whether a page associated with said animation processing is
visible and, if not visible, not subsequently calling back the
script component.

7. The method of claim 1 further comprising ascertaining if
an associated window containing a page associated with ani-
mation processing has a visible thumbnail preview and, if so,
subsequently calling back the script component.

8. One or more computer readable storage media embody-
ing computer readable instructions which, when executed,
implement a method comprising:

receiving a callback registration associated with animation

that is to occur within an application; and

in association with a display refresh, calling back a script

component effective to cause the script component to
perform animation processing.

9. The one or more computer readable storage media of
claim 8, wherein receiving the callback registration com-

Mar. 14, 2013

prises receiving a callback registration that does not specify
an associated time period or interval.

10. The one or more computer readable storage media of
claim 8, wherein prior to said calling back, ascertaining
whether there is to be a display refresh and, if so, performing
said calling back.

11. The one or more computer readable storage media of
claim 8, wherein prior to said calling back, ascertaining
whether there has been a display refresh and, if so, performing
said calling back.

12. The one or more computer readable storage media of
claim 8, wherein said calling back is performed by a view
controller in a layout pipeline.

13. The one or more computer readable storage media of
claim 8, further comprising ascertaining whether a page asso-
ciated with said animation processing is visible and, if not
visible, not subsequently calling back the script component.

14. The one or more computer readable storage media of
claim 8, further comprising ascertaining it an associated win-
dow containing a page associated with animation processing
has a visible thumbnail preview and, if so, subsequently call-
ing back the script component.

15. One or more computer-readable storage media
embodying an application configured to utilize a callback API
to align callbacks to a script component that enable the script
component to update animation, with refresh notifications.

16. The one or more computer-readable storage media of
claim 15, wherein the callback API does not enable specifi-
cation of an associated time period or interval.

17. The one or more computer-readable storage media of
claim 15, wherein the application is configured to ascertain
whether there is to be a display refresh and, if so, utilize the
callback API.

18. The one or more computer-readable storage media of
claim 15, wherein the application is configured to ascertain
whether there has been a display refresh and, if so, utilize the
callback API.

19. The one or more computer-readable storage media of
claim 15, wherein the application is configured to utilize the
callback API via a view controller within a layout pipeline of
the application.

20. The one or more computer-readable storage media of
claim 15, wherein the application is configured to not utilize
the callback API in an event that a page associated with the
animation is not visible.

21. The computer-implemented method of claim 1,
wherein the application comprises a web browser.

22. The one or more computer readable storage media of
claim 8, wherein the application comprises a web browser.

23. The one or more computer-readable storage media of
claim 15, wherein the application comprises a web browser.

