US 20060064649A1

a2 Patent Application Publication (o) Pub. No.: US 2006/0064649 A1l

a9 United States

Weber et al. (43) Pub. Date: Mar. 23, 2006
(54) SYSTEMS AND METHODS FOR (52) US. Cl s 715/811; 715/829
NAVIGATION OF A GRAPHICAL USER
ENVIRONMENT
(75) Inventors: Jason J. Weber, Kirkland, WA (US);
Christopher J. McGuire, Monroe, WA 7 ABSTRACT
(US); Sara 8. Ford, Bellevue, WA (US) Systems and methods are provided for navigating a graphi-
Correspondence Address: cal user interface, or GUL A list may be invoked by a
: keyboard shortcut within an integrated development envi-
OWI\(I)I? IIJ)I(]:?'(I?](IZQI;YY‘;I’&LSAH(]Z%] IEI;ITIIJ-ILFL OOR ronment, or IDE, for software development wherein there
1650 MARKET STREE'i‘ are a number of items such as open files and development
PHILADELPHIA. PA 19103 (US tools between which a user must navigate. The list appears
> (US) in a navigation dialog that comprises the items such as open
(73) Assignee: Microsoft Corporation, Redmond, WA files, tool wmdows sorted in a mqst rece ntly used, or MRU’
(US) order, aqd navigation of abstract views into the data. The .hst
may be invoked by the user from the keyboard by pressing
. the “Ctrl-Tab” keys, for example, and holding down the
21) Appl. No.: 10/948,895
(21) Appl. No /948, “Ctr]” key. Once invoked, the user may navigate the list to
(22) Filed: Sep. 23, 2004 select an item to open by usi.ng the arrow keys for, ex.ample,
on the keyboard or pressing the “Tab” key again, for
Publication Classification example, while holding down the key used to initially
invoke the navigation dialog. Once the user selects the
(51) Int. ClL desired item, the navigation dialog may be dismissed by
GO6F 17/00 (2006.01) releasing the key used to invoke it.
301
- : - - S N
Active Tools Open Files
& Bookmark Explorer AddPicture.cs
(<P . i
303 < Q Class View B) cropricture.cs
Server Explorer f£) OropClass.txt
Gd Solution Explorer GrabColor.cs
Output Window HomePage.cs > 302
~
ImageCapture.cs
(] ImageSend.txt
E) mageToggle.cs
LogFile.cs
l> MyClass3.cs L
N /
MyClass3.cs \
305 C Sharp Class File 304
C:\\Source\Jason’s Spec Application\MyClass3.cs

Patent Application Publication Mar. 23,2006 Sheet 1 of 7

| Window = |

Solution Explorer
Class View
Properties
Dynamic Help
Server Explorer
Toolbox

Task List

Qutput Window
Object Browser
Form1.cs (Design)
Forml.cs
Solution Explorer
Class View

Bookmark Explorer,

US 2006/0064649 A1

Docked Ctrl-Alt-L Alt-F6
Docked Ctrl-Alt-C Alt-Fé
Docked F4 Alt-F6
Docked Ctrl-F1 Alt-Fé6
Auto Hide Ctrl-Alt-S n/a

Auto Hide Ctri-Alt-X n/a

Docked Ctrl-Alt-K Alt-Fé
Docked Ctrl-Alt-O Alt-F6
EZIMDI Ctrl-Alt-J Ctrl-F6
EIMDI editor n/a Ctrl-Fé
EZMDI editor n/a CHtrl-Fé
Docked Ctrl-Alt-L Alt-F6
Docked Ctr-Alt-C Alt-Fé
Docked Cirl-Alt-B Alt-Fé6

Fig. 1

Patent Application Publication Mar. 23,2006 Sheet 2 of 7 US 2006/0064649 A1

301

N

Active Tools Open Files)
& Bookmark Explorer B addpicture.cs
303 < Q Class View E) croppicture.cs
Server Explorer £ oOropClass.txt
s Solution Explorer GrabColor.cs
B output Window HomePage.cs > 302
h @ ImageCapture.cs
(£] ImageSend.txt
@ ImageToggle.cs
_I:ogFiie.cs
[B) Myclassaes |
\ S
MyClass3.cs ‘ \
305 C Sharp Class File 304
C:\\Source\Jason’s Spec Application\MyClass3.cs

Patent Application Publication Mar. 23,2006 Sheet 3 of 7 US 2006/0064649 A1

401

4

Navigator
dismissed hl

402

ser presses
ctrl-tab?

Yes
h 4

Navigator opens

403\ with MRU lists of

files and active
tools

405 406

Window of file or

Navigator tool that was

dismisses cu_rrently seleqted —
in navigator is

User releases ctrl
key?

Y
\ 4

opened

No 419 420

ser presses Non-navigation .
non-navigation Yes—» keystrokeis |——p ;xggg
key? eaten
407
ouse double-> Select file or too! [4
click on an item in Yes—»{ double-clicked on |— F l 3
navigator? by mouse b
No 421 412 415 417

ser single
clicks item with
mouse?

User presses
shift key?

ser presses
arrow key?

User presses
tab key again?

410 413
Yes Yes Yes Yes
Scroll 'd Cll Y
Scroll in direction croll in direction Select item rection o
of navigation of arrow key single clicked on navigation
pressed reversed
elect item Seleg |;em l / /
scrolled to scrolled to 416 418 No

414

Patent Application Publication Mar. 23,2006 Sheet 4 of 7 US 2006/0064649 A1

503
N Navigator user interface Presentation
Layer
502 Data
N Presentation Layer Filter Manipulation
Layer

501 Storage of recent visible tool Application
N windows and recent opened Data Storage
files Layer

Fig. 4

Patent Application Publication Mar. 23,2006 Sheet 5 of 7 US 2006/0064649 A1

301
g
Active Tools Open Files ™
A Bookmark Explorer & Addpictue.cs] ResourceLoad.cs
3034 ‘Q’ Class View @ CropPicture.cs @ SafetyWatch.cs
88 server Explorer £ DropClass.txt ®) SourceGrab.cs
3 solution Explorer &) GrabColor.cs SourcePut,cs
Output Window %fgﬁzﬁ?%w&; ToggleImage.cs
~ @ ImageCapture.cs
(E] ImageSend.txt
ImageToggle.cs 204 >302
) LogFile.cs
) ™agnification.cs
NoneCrw.cs
B3 Nodetree.cs
E) Nodewstch.cs
#) Nodewatchz.cs
B} PatDebug.cs /
HomePage.cs
305 C Sharp Class File

C:\\SourcelJason’s Spec Application\HomePage.cs

Fig. 5

US 2006/0064649 A1

Patent Application Publication Mar. 23,2006 Sheet 6 of 7

52 SWVYHY90dd

9 St

oo | {oooooo| [0
W A | E <«—>» NOILVYDITddV
H ALOWTY sz
W 2o (974 97 ; 257 857
ATLAdWOI IST Pav0qfoy Sumpnoy vava |, SO | swvasod | waisis
ALOWTY ﬂ HWYY¥O04d ¥AHLO NOILVIITddV | ONILVYIJO
<< GER COCSETTT
Ao T %
NI0MaN] | D24V IPIY
h| |||||||||||| ITTTITrTTTTY T - |||||rn.v|'|l.||||l.”.q1. ||||||||||||
6§C |00 [oooooo[(]
) i = b = —
sre ! 0 §cc moa
L l — —«¢ A — —— wni8o4yg
t1zez 1934 ST on 77
YIOMIIN | sonfiouy sonfiony . onfaaruy 2901310y d1owapy —
o2y 19907 |_v sionsIN mduj 1257} QWY)10 4 JJID]0 A -UON] LEC sampopy
| ~UON d]qDiouidy IGDAOWIIY-UON] wvadosg 12130
“ 7 A yy y _
| | |9¢C swwiBosq
_mM s1ayvady “ 12 sng wasdy " uoywoyddy
— \ 4 y
[3 Y4 =
| Y14 1£¢ I{Y4 —
- _ ! aonf1apup 2onf1a1uf aonfiaruy $hbisds Sunwiadg
_ Uty _A T waaydiaag oap1/ sa1ydn19 nup
! inding X Suissasosq 097 (Wwvy)
| y i rEmmmmomm=—
Zrz 10nuop i 74 “ 0Ee 577 _vwm soIg _
e | drowapy |l NdD \ 77 wow)
J _ 0apiA 777 -2t woy) |
< ! a0y wiaisdg
e e e e e e e o e e

072 Juatuaniodiansy Sunnduio,)

Patent Application Publication Mar. 23,2006 Sheet 7 of 7 US 2006/0064649 A1

Computing —— B
Device 272 Computing Device 271
Object 273 T
[T—=___| Communications
Network/Bus

[]

O

A i

Computing Device 277

e

Database 278

Fig. 7

US 2006/0064649 Al

SYSTEMS AND METHODS FOR NAVIGATION OF
A GRAPHICAL USER ENVIRONMENT

COPYRIGHT NOTICE AND PERMISSION

[0001] A portion of the disclosure of this patent document
may contain material that is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever. The following notice shall apply to this
document: Copyright© 2004, Microsoft Corp.

FIELD OF THE INVENTION

[0002] This invention relates to computer graphical user
interface environments. More particularly, this invention
relates to navigation of a graphical user environment having
a number of previously opened items.

BACKGROUND OF THE INVENTION

[0003] Many computer users are heavily keyboard-centric
users because in a number situations it is often quicker to use
the keyboard to input a command or series of commands
than using a mouse or other input device. For a graphical
user environment (GUI) to accommodate these users, certain
keystrokes (or keyboard shortcuts) are often provided as an
alternative to entering commands with a mouse. For
example, software developers generally rely heavily on such
keyboard commands and regularly use these keyboard short-
cuts. In an integrated development environment (IDE) such
as MICROSOFT VISUAL BASIC 6® or MICROSOFT
VISUAL C/C++6® the user would traditionally encounter
10 tool windows and 300 commands. Thus, it was relatively
easy for these users to remember the important keyboard
shortcuts to successfully use the application. As utilized
herein with respect to the invention, a development envi-
ronment is defined as a software coding environment
wherein a developer creates or modifies computer readable
instructions according to desired functionality for execution
in a computing environment.

[0004] The software development industry, however, is
currently going through a transition from traditional,
focused IDEs to tools platforms. MICROSOFT VISUAL
STUDIO®, for example, currently has over 70 tool windows
and 3,000 commands, and it is desirable for users to quickly
and easily use the keyboard to navigate such tools platforms.
Traditional keyboard navigation of these platforms often
requires the user to remember a large number of keyboard
shortcuts and states of particular tool windows to open a
desired item. Users of other software applications having a
GUI that involves working with a number of items that the
user may need to activate would also benefit from a better
way to navigate through such items.

[0005] In this regard, there is a need for a system and
method that provides a more efficient and natural navigation
of a graphical user environment.

SUMMARY OF THE INVENTION

[0006] In consideration of the above-identified shortcom-
ings of the art, the invention provides systems and methods
for navigating a graphical user environment. A list may be
invoked to appear while in the graphical user environment of

Mar. 23, 2006

a particular software application comprising different types
of items that were opened previously with the software
application. Also, a list may be invoked to appear compris-
ing previously opened items associated with a development
environment for developing software applications.

[0007] An item then may be selected from the list and the
list is then dismissed automatically once the item is selected.
The list may be invoked via a keyboard. One way the list
may be invoked via a keyboard is by a user pressing and
holding down a first key on a keyboard and then pressing a
second key on the keyboard at least once while holding
down the first key. The list can then be dismissed simply by
releasing the first key. The items in the list may be selected,
while holding down the first key, by scrolling through the list
by pressing the second key, by pressing the arrow keys on
the keyboard in the direction one whishes to scroll, or by
pressing any alpha-numeric key to jump directly to that
portion of the list. The items in the list may be, for example,
files and/or software development tools, or views into
abstract containers of information. The list may also be
sorted by items most recently used and also such that the list
is first sorted by type of item and then by items most recently
used. Other advantages and features of the invention are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The systems and methods for navigation of a
graphical user environment are further described with ref-
erence to the accompanying drawings in which:

[0009] FIG. 1 is a chart illustrating examples of various
windows, each window’s state, and associated keyboard
shortcuts to open the window within an exemplary graphical
user environment;

[0010] FIG.?2 is arendering illustrating an exemplary user
interface of a system and method for navigating a graphical
user environment;

[0011] FIG. 3 is a flow chart illustrating a process for
navigating a graphical user environment utilizing a user
interface such as the exemplary user interface of FIG. 2;

[0012] FIG. 4 is a block diagram showing the architecture
of a system for navigating a graphical user environment; and

[0013] FIG. 5 is a rendering illustrating the exemplary
user interface of FIG. 2 accommodating additional items for
the system and methods illustrated in FIGS. 3 and 4 for
navigating a graphical user environment.

[0014] FIG. 6 is a block diagram representing an exem-
plary computing device suitable for use in conjunction with
various aspects of the invention; and

[0015] FIG. 7 illustrates an exemplary networked com-
puting environment in which many computerized processes,
including those of various aspects of the invention, may be
implemented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0016] Certain specific details are set forth in the follow-
ing description and figures to provide a thorough under-
standing of various embodiments of the invention. Certain
well-known details often associated with computing and

US 2006/0064649 Al

software technology are not set forth in the following
disclosure to avoid unnecessarily obscuring the various
embodiments of the invention. Further, those of ordinary
skill in the relevant art will understand that they can practice
other embodiments of the invention without one or more of
the details described below. Finally, while various methods
are described with reference to steps and sequences in the
following disclosure, the description as such is for providing
a clear implementation of embodiments of the invention,
and the steps and sequences of steps should not be taken as
required to practice this invention.

[0017] Overview

[0018] Systems and methods are provided for navigating a
GUI. The exemplary GUI is one of an IDE for software
development wherein there are a number of items such as
open files and development tools between which a user must
navigate. A navigation dialog may be invoked by the user
from the keyboard wherein the navigation dialog has a list
of recently accessed items such as open files and tool
windows. Once invoked, the user may navigate the list to
select an item to open by using the arrow keys for, example,
on the keyboard or pressing the “Tab” key, for example,
while holding down the key used to initially invoke the
navigation dialog. Once the user selects the desired item, the
navigation dialog may be dismissed by releasing the key
initially used to invoke it.

[0019] First, an exemplary GUI is introduced in the sec-
tion “Exemplary GUI,” for which the system and method for
GUI navigation described herein may be suitable. Second,
an exemplary method of navigation is described in the
section “GUI Navigation.” Third, a suitable system archi-
tecture is described in the section “System Architecture” for
the systems and methods of GUI navigation described
herein. Finally, a description of a computing and networked
environment is provided which will be recognized as gen-
erally suitable for use in connection with the systems and
methods set forth herein. Because the material in the figures
corresponding to the exemplary computing and networked
environment is generally for exemplary purposes, the cor-
responding description is reserved for the end of this speci-
fication, in the section entitled “Exemplary Computing and
Network Environment.”

[0020] Exemplary GUI

[0021] Referring first to FIG. 1, shown is a chart illus-
trating examples of various windows, each window’s state,
and associated keyboard shortcuts to open the window
within an exemplary graphical user environment. The
example in FIG. 1 is corresponds to an IDE for a default
MICROSOFT VISUAL STUDIO 7 RTM® installation.
Many software application programs, such as the
MICROSOFT VISUAL STUDIO 7® IDE for example, have
the ability to show windows giving views of more than one
document at a time. This is known as a multiple document
interface, or MDI. In the present example, there are 44 tool
windows wherein each tool window may be in one of the
following five states:

[0022] 1. Docked (a tool window that is attached to a
side of the IDE and visible).

[0023] 2. Floating (a tool window that is floating over
the IDE).

Mar. 23, 2006

[0024] 3. Auto Hide (a docked tool window that is
hidden against the side of the IDE).

[0025] 4. MDI tool (a tool window that is in the
document windows bay).

[0026] 5. MDI editor (an editor window that is in the
document windows bay).

[0027] Before a user can navigate around the IDE with a
keyboard, the user must know the state of a tool window. In
doing so, the user must locate that tool window on the
screen. For example, in MICROSOFT VISUAL STUDIO
7®, if the object browser tool window is docked in the MDI
space, called the EZMDI® space, the user will likely press
Ctrl-F6 on the keyboard to indirectly walk the EZMDI®
documents. If the object browser is a visible docked tool
window, the user may press Alt-F6, for example, to indi-
rectly walk the tool windows. If the object browser is an auto
hide tool window the user may press Ctrl-Alt-J on the
keyboard to directly jump to that control.

[0028] In a clean MICROSOFT VISUAL STUDIO 7®
installation with a new C# project open, for example, a user
must know 11 keyboard shortcuts to efficiently navigate the
IDE without using a mouse. This number grows significantly
when the remaining 35 tool windows are factored in and
when the user changes the state of tool windows. For
example, in a worst case scenario a user could be forced to
know 31 different keyboard shortcuts to navigate the IDE.

[0029] In addition to the sheer number of keyboard short-
cuts discussed above, moving between open files with the
keyboard provides additional challenges. A user may press
Ctrl-F6 and Ctrl-Shift-F6, for example, to indirectly walk
the open files. However, when more than 10 files are open
it is often inconvenient.

[0030] Discussed below is a more intuitive way for users
to navigate a GUI, such as an IDE, from the keyboard. More
efficient and natural navigation of a GUI is provided by
eliminating the user having to first think about things such
as state information, about whether the user is jumping to a
file or a tool window, and about whether a direct or indirect
keyboard shortcut is needed to open an item.

[0031] GUI Navigation

[0032] Referring to FIG. 2, shown is a rendering illus-
trating an exemplary user interface of a system and method
for navigating a graphical user environment. This interface
301, hereafter referred to as the navigator dialog 301, is an
exemplary interface showing as an example particular files
302 and active tools 303 that may be associated with
MICROSOFT VISUAL STUDIO®. Although the navigator
dialog and associated system for navigating a graphical user
environment may be particularly suited for the
MICROSOFT VISUAL STUDIO® IDE, the navigator dia-
log 301 is not limited to any particular IDE or software
application as the files and other objects that may appear in
and be accessed through the navigator dialog may be various
objects and files from any number of different applications.
However, any application or development tool in which the
user works with a large number of different files or objects
in a given session is particularly suited for the system and
methods set forth herein.

[0033] Once invoked by the user, the navigator dialog 301
appears. The navigator dialog 301 comprises a list of items

US 2006/0064649 Al

such as open files 302 and active tools 303, a cursor 304
indicating to the user which item is currently selected, and
an object information area 305 containing information about
the currently selected item in the navigator dialog 301. The
list of open files and active tools is sorted according to the
file or tool window most recently used (MRU) by the user.
Files, as used herein, means any set of stored bits that can be
referenced for retrieval by a file system of a computer, and
includes, but is not limited to, object files, dynamic link
libraries, source code files, content such as image files,
sound files, movie files, etc. In the example provided in FIG.
2, the most recently used file is “AddPicture.cs” and the least
recently used file is “MyClass3.cs.” Likewise, the most
recently used active tool is “Bookmark Explorer” and the
least recently used active tool is “Output Window.” In the
instance illustrated, the exemplary file “MyClass3.cs” is
currently selected and the information displayed is file name
(“MyClass3.cs”), type of file (“Sharp Class File”) and file
location such as the relative path (“C:\\Source\Jason’s Spec
Application\MyClass3.cs”). However, more or less informa-
tion about the item may also be displayed as is desirable for
the particular application. As described in detail below, the
user will be able to easily navigate between different active
tools and different open files using the keyboard.

[0034] Referring additionally to FIG. 3, shown is a flow
chart illustrating a process for navigating a graphical user
environment utilizing a user interface such as the exemplary
user interface of FIG. 2. In a user’s application, the navi-
gator dialog 301 is initially in a dismissed state 401. The user
invokes the navigator dialog by holding down the standard
keyboard key “Ctrl” and then pressing the “Tab” key con-
currently 402. Other keystrokes may also be used and be
programmed by the user, however, the “Ctrl” and “Tab” keys
are particularly suited for the present application due to the
location of the keys on the keyboard, the traditional use of
these keys, as well as for other reasons which will become
evident from the way in which the items are selected in the
navigator dialog 301.

[0035] Once invoked, the navigator dialog 301 opens 403
with a list of open files 302 and active tools 303 sorted in an
MRU order as described above. The most recently used file
is selected by default when the navigator dialog 301 is
invoked. For example, the position of the cursor 304 is at the
most recently used file initially when the navigator dialog
301 opens. However, if the user is already working in a file
when the navigator dialog 301 is invoked, then the next most
recently used file is initially selected. Alternatively, the most
recently used active tool may be selected by default when
the navigator dialog is invoked. This may be implemented
instead of, or as an additional command to invoking the
navigator dialog with the most recently used file being
selected initially. In the case of it being an additional
command, the user would invoke it by holding down the
standard keyboard key “Alt” and then pressing the “F7” key
concurrently. This will allow users to quickly jump between
a file and tool window.

[0036] The navigator dialog will remain open as long as
the “Ctrl” key is being pressed by the user. However, if the
user releases the “Ctrl” key 404, then the navigator dialog
dismisses 405 and the currently selected item (i.e., the item
at which the cursor 304 is currently positioned) is activated

Mar. 23, 2006

by opening the window of that item 406, for example. The
navigator dialog 301 may then be invoked again by pressing
the “Ctrl” and “Tab” keys.

[0037] 1If the user continues to hold down the “Ctrl” key
but at any time presses a key on the keyboard that does not
otherwise affect navigation 419 in the navigator dialog 301,
then that keystroke is eaten 420 without being passed to the
application such as the IDE. The navigator dialog 301 then
dismisses 407 without taking any action. For example, if the
user is working in the editor of the IDE and invokes the
navigator dialog and the user then presses the “Backspace”
key, the Navigator dialog will dismiss 407 and the backspace
will not occur in the editor of the IDE. This prevents keys
accidentally pressed by the user from making unintended
changes in other areas of the IDE.

[0038] Continuing to hold down the “Ctrl” key, if the user
at any time double-clicks on an item in the navigator dialog
301 with a mouse, then that item is selected 409, the
navigator dialog 301 is dismissed 405 and that item is
activated 406 (say by opening the window of the file
selected, for example). Also, if at any time while holding
down the “Ctrl” key, the user presses the “Tab” key again
421 after initially invoking the navigator dialog 301, the
cursor scrolls to 410 and selects 411 (by highlighting, for
example) the next item in the current direction of navigation,
which is either up or down the current list in the navigator
dialog 301At that point, if the user releases the “Ctrl” key
404 the navigator dialog 301 is dismissed 405 and the item
currently selected is activated 406 (such as by opening the
widow of that item, for example). Also, if at any time the
user presses any of the arrow keys 412 while holding down
the “Ctrl’ key, the cursor 304 then scrolls 413 in the direction
of the arrow key pressed. This may be up, down, left or right
and enables the user to easily go between items within a list
or between lists, such as between the list of open files and
active tools in the navigator dialog 301. The cursor 304
selects 414 the item at which the cursor stops when the
arrow key is released. Again, at that point the user may
release the “Ctrl” key 404 to dismiss 405 the navigator
dialog 301 and activate the item currently selected 406.

[0039] If the user chooses to use a mouse to select an item,
at any time while holding down the “Ctrl” key the user may
single-click 415 on an item in the navigator dialog 301 with
the mouse and it will be selected 416 by having the cursor
move to the position of that item. Then, by releasing the
“Ctr]” key, the navigator dialog 301 will be dismissed 405
and that item will be activated 406. Also, the user may
change the current direction of navigation for use in navi-
gation with the “Tab” key as described above by at any time
pressing the “Shift” key 417 while continuing to hold down
the “Ctrl” key. The direction of navigation is then changed
418 such that when the user presses the “Tab” key again 409
while continuing to hold down the “Ctrl” key, the cursor 304
will scroll 410 in the opposite direction as it would have
before pressing the “Shift” key.

[0040] System Architecture

[0041] Referring next to FIG. 4, shown is a block diagram
illustrating an exemplary architecture of a system for navi-
gating a graphical user environment. Shown is storage of
recently accessed items 501, such as recently visible tool
windows and recently opened files at a conceptual applica-
tion data storage layer. Also illustrated is a presentation layer

US 2006/0064649 Al

filter 502 at data manipulation layer and the navigator user
interface (the navigator dialog, for example) at a presenta-
tion layer. Stored at the application data storage layer is a
constantly maintained list of recently accessed items such as
recently used visible tool windows and recently opened files.
This list may be as large as the storage space allocated in the
particular application allows and, for example, may often
include as many as 500 visible tool windows.

[0042] At the presentation layer filter 502, the recently
accessed items of particular interest from all the stored
recently accessed items is selected. For example, this may be
the 15 most recently used visible tool windows from a stored
group of 500 most recently used visible tool windows as it
may not be practicable to display all of the recently accessed
items stored. This group of recently accessed items of
particular interest is then passed to the presentation layer for
display in the navigator user interface 503 (i.e., the navigator
dialog).

[0043] Referring next to FIG. 5, shown is a rendering
illustrating the exemplary user interface of FIG. 2 accom-
modating additional items for the system and methods
illustrated in FIGS. 4 and 5 for navigating a graphical user
environment. The navigator dialog 301 will dynamically
resize in both height and width to accommodate more items.
The navigator dialog 301 has the ability to scale and display
up to 15 active tools and 60 open files, for example. This is
five columns of 15 items each. However, although it is rare
for a user to have more than 11 active tools or more than 30
open files, the navigator dialog accommodates a larger
numbers of items by allowing the user to scroll within the
navigator dialog to display more items.

[0044] Exemplary Computing and Network Environment

[0045] Referring to FIG. 9a, shown is a block diagram
representing an exemplary computing device suitable for use
in conjunction with various aspects of the invention. For
example, the computer executable instructions that carry out
the processes and methods navigating a graphical user
environment as described above may reside and/or be
executed in such a computing environment as shown in FIG.
9a. The computing system environment 220 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 220 be interpreted as having any dependency
or requirement relating to any one or combination of com-
ponents illustrated in the exemplary operating environment
220.

[0046] Aspects of the invention are operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well known computing systems, environments, and/or con-
figurations that may be suitable for use with the invention
include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puters, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like.

[0047] Aspects of the invention may be implemented in
the general context of computer-executable instructions,

Mar. 23, 2006

such as program modules, being executed by a computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types.
Aspects of the invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. In a distributed computing environ-
ment, program modules may be located in both local and
remote computer storage media including memory storage
devices.

[0048] An exemplary system for implementing aspects of
the invention includes a general purpose computing device
in the form of a computer 241. Components of computer 241
may include, but are not limited to, a processing unit 259, a
system memory 222, and a system bus 221 that couples
various system components including the system memory to
the processing unit 259. The system bus 221 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. By way of example,
and not limitation, such architectures include Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezza-
nine bus.

[0049] Computer 241 typically includes a variety of com-
puter readable media. Computer readable media can be any
available media that can be accessed by computer 241 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 241.
Communication media typically embodies computer read-
able instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of the any of the above should also be included within
the scope of computer readable media.

[0050] The system memory 222 includes computer stor-
age media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 223 and random access
memory (RAM) 260. A basic input/output system 224
(BIOS), containing the basic routines that help to transfer

US 2006/0064649 Al

information between elements within computer 241, such as
during start-up, is typically stored in ROM 223. RAM 260
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 259. By way of example, and not
limitation, FIG. 9a illustrates operating system 225, appli-
cation programs 226, other program modules 227, and
program data 228.

[0051] The computer 241 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 9a illustrates a hard
disk drive 238 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 239 that
reads from or writes to a removable, nonvolatile magnetic
disk 254, and an optical disk drive 240 that reads from or
writes to a removable, nonvolatile optical disk 253 such as
a CD ROM or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM, and the like. The hard
disk drive 238 is typically connected to the system bus 221
through an non-removable memory interface such as inter-
face 234, and magnetic disk drive 239 and optical disk drive
240 are typically connected to the system bus 221 by a
removable memory interface, such as interface 235.

[0052] The drives and their associated computer storage
media discussed above and illustrated in FIG. 9a, provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 241. In
FIG. 9a, for example, hard disk drive 238 is illustrated as
storing operating system 258, application programs 257,
other program modules 256, and program data 255. Note
that these components can either be the same as or different
from operating system 225, application programs 226, other
program modules 227, and program data 228. Operating
system 258, application programs 257, other program mod-
ules 256, and program data 255 are given different numbers
here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the
computer 241 through input devices such as a keyboard 251
and pointing device 252, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 259 through a user input
interface 236 that is coupled to the system bus, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 242 or other type of display device is also connected
to the system bus 221 via an interface, such as a video
interface 232. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
244 and printer 243, which may be connected through a
output peripheral interface 233.

[0053] The computer 241 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 246. The
remote computer 246 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 241,

Mar. 23, 2006

although only a memory storage device 247 has been
illustrated in FIG. 9a. The logical connections depicted in
FIG. 94 include a local area network (LAN) 245 and a wide
area network (WAN) 249, but may also include other
networks. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet.

[0054] When used in a LAN networking environment, the
computer 241 is connected to the LAN 245 through a
network interface or adapter 237. When used in a WAN
networking environment, the computer 241 typically
includes a modem 250 or other means for establishing
communications over the WAN 249, such as the Internet.
The modem 250, which may be internal or external, may be
connected to the system bus 221 via the user input interface
236, or other appropriate mechanism. In a networked envi-
ronment, program modules depicted relative to the computer
241, or portions thereof, may be stored in the remote
memory storage device. By way of example, and not limi-
tation, FIG. 94 illustrates remote application programs 248
as residing on memory device 247. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

[0055] 1t should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combi-
nation of both. Thus, the methods and apparatus of the
invention, or certain aspects or portions thereof, may take
the form of program code (i.e., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard
drives, or any other machine-readable storage medium
wherein, when the program code is loaded into and executed
by a machine, such as a computer, the machine becomes an
apparatus for practicing the invention. In the case of pro-
gram code execution on programmable computers, the com-
puting device generally includes a processor, a storage
medium readable by the processor (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. One or more
programs that may implement or utilize the processes
described in connection with the invention, e.g., through the
use of an API, reusable controls, or the like. Such programs
are preferably implemented in a high level procedural or
object oriented programming language to communicate with
a computer system. However, the program(s) can be imple-
mented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted lan-
guage, and combined with hardware implementations.

[0056] Although exemplary embodiments refer to utiliz-
ing aspects of the invention in the context of one or more
stand-alone computer systems, the invention is not so lim-
ited, but rather may be implemented in connection with any
computing environment, such as a network or distributed
computing environment. Still further, aspects of the inven-
tion may be implemented in or across a plurality of pro-
cessing chips or devices, and storage may similarly be
effected across a plurality of devices. Such devices might
include personal computers, network servers, handheld
devices, supercomputers, or computers integrated into other
systems such as automobiles and airplanes.

[0057] An exemplary networked computing environment
is provided in FIG. 9b. One of ordinary skill in the art can

US 2006/0064649 Al

appreciate that networks can connect any computer or other
client or server device, or in a distributed computing envi-
ronment. In this regard, any computer system or environ-
ment having any number of processing, memory, or storage
units, and any number of applications and processes occur-
ring simultaneously is considered suitable for use in con-
nection with the systems and methods provided.

[0058] Distributed computing provides sharing of com-
puter resources and services by exchange between comput-
ing devices and systems. These resources and services
include the exchange of information, cache storage and disk
storage for files. Distributed computing takes advantage of
network connectivity, allowing clients to leverage their
collective power to benefit the entire enterprise. In this
regard, a variety of devices may have applications, objects
or resources that may implicate the processes described
herein.

[0059] FIG. 9b provides a schematic diagram of an exem-
plary networked or distributed computing environment. The
environment comprises computing devices 271, 272, 276,
and 277 as well as objects 273, 274, and 275, and database
278. Each of these entities 271, 272,273,274, 275,276, 277
and 278 may comprise or make use of programs, methods,
data stores, programmable logic, etc. The entities 271, 272,
273, 274, 275, 276, 277 and 278 may span portions of the
same or different devices such as PDAs, audio/video
devices, MP3 players, personal computers, etc. Each entity
271,272,273,274,275,276,277 and 278 can communicate
with another entity 271, 272, 273, 274, 275, 276, 277 and
278 by way of the communications network 270. In this
regard, any entity may be responsible for the maintenance
and updating of a database 278 or other storage element.

[0060] This network 270 may itself comprise other com-
puting entities that provide services to the system of FIG.
9b, and may itself represent multiple interconnected net-
works. In accordance with an aspect of the invention, each
entity 271, 272, 273, 274, 275, 276, 277 and 278 may
contain discrete functional program modules that might
make use of an API, or other object, software, firmware
and/or hardware, to request services of one or more of the
other entities 271, 272, 273, 274, 275, 276, 277 and 278.

[0061] It can also be appreciated that an object, such as
275, may be hosted on another computing device 276. Thus,
although the physical environment depicted may show the
connected devices as computers, such illustration is merely
exemplary and the physical environment may alternatively
be depicted or described comprising various digital devices
such as PDAs, televisions, MP3 players, etc., software
objects such as interfaces, COM objects and the like.

[0062] There are a variety of systems, components, and
network configurations that support distributed computing
environments. For example, computing systems may be
connected together by wired or wireless systems, by local
networks or widely distributed networks. Currently, many
networks are coupled to the Internet, which provides an
infrastructure for widely distributed computing and encom-
passes many different networks. Any such infrastructures,
whether coupled to the Internet or not, may be used in
conjunction with the systems and methods provided.

[0063] A network infrastructure may enable a host of
network topologies such as client/server, peer-to-peer, or

Mar. 23, 2006

hybrid architectures. The “client” is a member of a class or
group that uses the services of another class or group to
which it is not related. In computing, a client is a process,
i.e., roughly a set of instructions or tasks, that requests a
service provided by another program. The client process
utilizes the requested service without having to “know” any
working details about the other program or the service itself.
In a client/server architecture, particularly a networked
system, a client is usually a computer that accesses shared
network resources provided by another computer, e.g., a
server. In the example of FIG. 9b, any entity 271, 272, 273,
274, 275, 276, 277 and 278 can be considered a client, a
server, or both, depending on the circumstances.

[0064] A server is typically, though not necessarily, a
remote computer system accessible over a remote or local
network, such as the Internet. The client process may be
active in a first computer system, and the server process may
be active in a second computer system, communicating with
one another over a communications medium, thus providing
distributed functionality and allowing multiple clients to
take advantage of the information-gathering capabilities of
the server. Any software objects may be distributed across
multiple computing devices or objects.

[0065] Client(s) and server(s) communicate with one
another utilizing the functionality provided by protocol
layer(s). For example, HyperText Transfer Protocol (HTTP)
is a common protocol that is used in conjunction with the
World Wide Web (WWW), or “the Web.” Typically, a
computer network address such as an Internet Protocol (IP)
address or other reference such as a Universal Resource
Locator (URL) can be used to identify the server or client
computers to each other. The network address can be
referred to as a URL address. Communication can be pro-
vided over a communications medium, e.g., client(s) and
server(s) may be coupled to one another via TCP/IP con-
nection(s) for high-capacity communication.

[0066] Inlight of the diverse computing environments that
may be built according to the general framework provided in
FIG. 9a and the further diversification that can occur in
computing in a network environment such as that of FIG.
9b, the systems and methods provided herein cannot be
construed as limited in any way to a particular computing
architecture. Instead, the invention should not be limited to
any single embodiment, but rather should be construed in
breadth and scope in accordance with the appended claims.

What is claimed:

1. A method for navigating a graphical user interface
comprising invoking a list comprising previously accessed
items associated with a development environment for devel-
oping software applications.

2. The method of claim 1, further comprising selecting an
item from the list.

3. The method of claim 2 further comprising dismissing
the list automatically once the item is selected.

4. The method of claim 2 wherein the list is invoked via
a keyboard.

5. The method of claim 3 wherein the dismissing step
comprises releasing a key on a keyboard.

6. The method of claim 2 wherein the invoking step
comprises:

pressing and holding down a first key on a keyboard; and

US 2006/0064649 Al

pressing a second key on the keyboard at least once while

holding down the first key.

7. The method of claim 6, further comprising dismissing
the list by releasing the first key.

8. The method of claim 6 wherein the selecting step
comprises pressing the second key again to scroll through
the list until a desired item is reached.

9. The method of claim 6 wherein the selecting step
comprises using one or more keys of a keyboard to select a
desired item.

10. The method of claim 1 wherein the list of items
comprises files.

11. The method of claim 10 wherein the list of items
further comprises software development tools.

12. The method of claim 2 wherein the development
environment for developing software applications is an
integrated development environment comprising at least a
source code editor and a compiler.

13. The method of claim 2 wherein the list is sorted by
items most recently used.

14. The method of claim 2 wherein the list is first sorted
by type of item and then by items most recently used.

15. A method for navigating a graphical user interface
comprising:

pressing and holding down a first key on a keyboard while
in a graphical user environment of a particular software
application; and

pressing a second key on the keyboard at least once while
holding down the first key, thereby invoking a list to
appear within the software application comprising dif-
ferent types of items that were opened previously with
the software application.

16. The method of claim 15, further comprising selecting
an item from the list.

17. The method of claim 16 further comprising dismissing
the list automatically once the item is selected.

18. The method of claim 17 wherein the dismissing step
comprises releasing the first key.

19. The method of claim 16 wherein the selecting step
comprises pressing the second key again to scroll through
the list until a desired item is reached.

20. The method of claim 16 wherein the selecting step
comprises using one or more keys of a keyboard to select a
desired item in the list.

21. The method of claim 15 wherein the list is sorted by
items most recently used.

22. The method of claim 15 wherein the list is first sorted
by type of item and then by items most recently used.

23. A computer readable medium having stored thereon a
plurality of computer-executable instructions for navigating
a graphical user interface, said computer-executable instruc-
tions performing the method of invoking a list to appear
comprising previously opened items associated with a devel-
opment environment for developing software applications.

24. The computer readable medium of claim 23, further
having stored thereon a plurality of computer-executable
instructions for selecting an item from the list.

25. The computer readable medium of claim 24, further
having stored thereon a plurality of computer-executable
instructions for dismissing the list automatically once the
item is selected.

26. The computer readable medium of claim 25 wherein
the computer-executable instructions for dismissing com-

Mar. 23, 2006

prise computer-executable instructions for dismissing the
list upon releasing a key on a keyboard.

27. The computer readable medium of claim 24 wherein
the computer-executable instructions for invoking comprise
computer-executable instructions for invoking the list via a
keyboard.

28. The computer readable medium of claim 24 wherein
the computer-executable instructions for performing the
invoking step comprises computer-executable instructions
for invoking the list when a user performs the method of:

pressing and holding down a first key on a keyboard; and

pressing a second key on the keyboard at least once while

holding down the first key.

29. The computer readable medium of claim 28, further
having stored thereon a plurality of computer-executable
instructions for dismissing the list upon the user releasing
the first key.

30. The computer readable medium of claim 24 wherein
the list is sorted by items most recently used.

31. The computer readable medium of claim 24 wherein
the list is first sorted by type of item and then by items most
recently used.

32. A computer readable medium having stored thereon a
plurality of computer-executable instructions for navigating
a graphical user interface, said computer-executable instruc-
tions for performing a method comprising:

first determining that a user of a software application
having a user interface pressed and held down a first
key on a keyboard,

second determining that the user pressed a second key on
the keyboard at least once while holding down the first
key; and

invoking a list within the software application in response
to said second determining, said list comprising differ-
ent types of items that were opened previously with the
software application.

33. The computer readable medium of claim 32, further
having stored thereon a plurality of computer-executable
instructions for selecting an item from the list.

34. The computer readable medium of claim 33, further
having stored thereon a plurality of computer-executable
instructions for dismissing the list automatically once the
item is selected.

35. A user interface component for navigating a graphical
user interface, comprising:

a list component for instantiating the display of a list
comprising elements that refer to previously opened
items associated with a development environment for
developing software.

36. The user interface component of claim 35, further

comprising:

an input component for receiving a selection of an item

from the list.

37. The user interface component of claim 36, wherein
said list component dismisses the list once the item is
selected via the input component.

38. The user interface component of claim 37, wherein the
item is selected by releasing a key on a keyboard.

US 2006/0064649 Al

39. The user interface component of claim 36, wherein the
list component instantiates the display of the list when the
input component receives a selection via at least one key-
board input of a keyboard.

40. The user interface component of claim 39, wherein the
list component instantiates the display of the list when the
input component receives a selection via at least one key-
board input, wherein said at least one keyboard input
includes:

first input relating to pressing and holding down a first key
on the keyboard; and

second input relating to pressing a second key on the

keyboard at least once while holding down the first key.

41. The user interface component of claim 40, wherein the
list component destructs the list the first key of the keyboard
is released.

42. The user interface component of claim 40, wherein the
list component scrolls a current item in the list to be selected
to a next item in the list in response to receiving input
relating to pressing the second key again.

43. The user interface component of claim 40, wherein the
list component moves a current item in the list to be selected
to a next item in response to receiving input relating to at
least one key of the keyboard.

44. The user interface component of claim 35, wherein the
list of items comprises files.

45. The user interface component of claim 44, wherein the
list of items further comprises software development tools.

Mar. 23, 2006

46. The user interface component of claim 35, wherein the
development environment for developing software applica-
tions is an integrated development environment comprising
at least a source code editor and a compiler.

47. The user interface component of claim 35, wherein the
list is sorted by items most recently used.

48. The user interface component of claim 35, wherein the
list is first sorted by type of item and then by items most
recently used.

49. A computer readable medium comprising computer
executable modules having computer executable instruc-
tions for navigating a graphical user interface, the modules
comprising:

means for invoking a list comprising previously opened
items associated with a development environment for
developing software applications.
50. A computer readable medium according to claim 49,
wherein said means for invoking a list includes:

means for determining that a first key has been pressed
and held down on a keyboard and that a second key on
the keyboard has been pressed at least once while the
first key continues to be held down; and

means for instantiating a list within the software applica-
tion in response to said means for determining, said list
comprising different types of items that were opened
previously with the software application.

#* #* #* #* #*

