
USO10965444B2

(12) United States Patent
Weber et al .

(10) Patent No .: US 10,965,444 B2
(45) Date of Patent : * Mar . 30 , 2021

(56) References Cited (54) MITIGATING TIMING ATTACKS VIA
DYNAMICALLY TRIGGERED TIME
DILATION U.S. PATENT DOCUMENTS

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

8,719,925 B1
8,775,564 B1

5/2014 Berg
7/2014 Smart et al .

(Continued)

FOREIGN PATENT DOCUMENTS
(72) Inventors : Jason Weber , Medina , WA (US) ; Tobin

Titus , Kirkland , WA (US) ; Daniel
Libby , Kirkland , WA (US) ; Brian
Manthos , Bellevue , WA (US) ; Colin
Pacitti , Seattle , WA (US) ; Pengxiang
Zhao , Bellevue , WA (US) ; Matthew
Miller , Seattle , WA (US) ; Jordan
Thomas Rabet , Seattle , WA (US) ;
John Hazen , Kirkland , WA (US)

WO
WO
WO

2013172913 A2 11/2013
WO2013172913 * 11/2013

2014065801 A1 5/2014
G06F 21/556

OTHER PUBLICATIONS

(73) Assignee : MICROSOFT TECHNOLOGY
LICENSING , LLC , Redmond , WA
(US)

Acm 2670940 — StopWatch : A Cloud Architecture for Timing Chan
nel Mitigation , ACM Transactions on Information and System
Security , vol . 17 , No. 2 , Article 8 , Publication date : Nov. 2014
(Year : 2014) . *

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 261 days .
This patent is subject to a terminal dis
claimer .

Primary Examiner Ali S Abyaneh
Assistant Examiner - Shu Chun Gao
(74) Attorney , Agent , or Firm — Fountainhead Law
Group P.C. (21) Appl . No .: 15 / 961,830

(22) Filed : Apr. 24 , 2018 (57) ABSTRACT

(65) Prior Publication Data

US 2019/0327075 A1 Oct. 24 , 2019

(51) Int . Ci .
H04L 9/00 (2006.01)

(52) U.S. CI .
CPC H04L 9/005 (2013.01) ; G06F 2207/7223

(2013.01) ; H04L 2209/046 (2013.01) ; HO4L
2209/08 (2013.01) ; H04L 2209/122 (2013.01)

(58) Field of Classification Search
CPC HO4L 9/005 ; H04L 2209/122 ; HO4L

2209/046 ; HO4L 2209/08 ; G06F
2207/7223

See application file for complete search history .

Techniques for mitigating timing attacks via dynamically
triggered time dilation are provided . According to one set of
embodiments , a computer system can track a count of
application programming interface (API) calls or callbacks
made by a program within each of a series of time buckets .
The computer system can further determine that the count
exceeds a threshold count for a predefined consecutive
number of time buckets . Upon making this determination ,
the computer system can trigger time dilation ith respect to
the program , where the time dilation causes the program to
observe a dilated view of time relative to real time .

20 Claims , 6 Drawing Sheets
400

WHILE JAVASCRIPT PROGRAM IS RUNNING AND TIME
DILATION IS TURNED ON FOR THE PROGRAM , CALL
RATE TRACKING MODULE STARTS TIMER FOR A

CURRENT BUCKET

404
CALL RATE TRACKING MODULE RECEIVES AND

COUNTS NUMBER OF CALLS / CALLBACKS MADE BY
JAVASCRIPT PROGRAM TO IMPLICIT CLOCK ANDIOR

EXPLICIT CLOCK APIS

CALL RATE TRACKING MODULE DETERMINES THAT
TIMER STARTED AT BLOCK 402 HAS REACHED LIMIT

AND CLOSES CURRENT BUCKET
40B

CALL RATE TRACKING MODULE RECORDS TOTAL
COUNT OF API CALLB / CALLBACKS MADE DURING THAT

BUCKET

410
YES , No TOTAL COUNT

EXCEEDS
THRESHOLD ?

414 4123
MARK AS BAD BUCKET MARK AS GOOD BUCKET

418
SCALE UP TIME DILATION
APPLIED TO JAVASCRIPT

PROGRAM

416 #BAD
BUCKETS WITHIN Y

RECENT
BUCKETS ?

BETWEEN A AND

420
SCALE DOWN TIME OILATION APPLIED TO

JAVASCRIPT PROGRAM

US 10,965,444 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,813,240 B1 8/2014 Northup
10,210,335 B2 2/2019 Madou et al .
10,509,714 B2 12/2019 Ikeda et al .

2003/0158854 Al 8/2003 Yoshida et al .
2005/0050324 A1 3/2005 Corbett et al .
2005/0213761 A1 9/2005 Walmsley et al .
2010/0131936 Al 5/2010 Cheriton
2010/0146085 A1 * 6/2010 Van Wie HO4L 67/1059

709/220
2012/0185700 A1 7/2012 Vidrine et al .
2012/0192283 A1 7/2012 Gu et al .
2013/0298236 A1 11/2013 Smith et al .
2013/0326625 Al 12/2013 Anderson et al .
2014/0123139 A1 5/2014 Fine et al .
2014/0282464 Al 9/2014 El - gillani
2014/0380474 A1 * 12/2014 Paithane HO4L 63/145

726/23
2015/0067853 A1 3/2015 Amrutkar et al .
2015/0082434 A1 3/2015 Sethumadhavan et al .
2016/0014076 A1 1/2016 Hansen
2016/0014084 Al 1/2016 Hansen
2016/0218721 Al 7/2016 Herbeck
2018/0048660 A1 2/2018 Paithane et al .
2018/0068115 A1 * 3/2018 Golovkin G06F 21/53
2018/0157827 A1 6/2018 Kang et al .
2018/0247069 Al 8/2018 Tang et al .
2018/0323960 A1 11/2018 Courtney
2019/0073665 Al 3/2019 Belleville et al .
2019/0108330 A1 4/2019 Sikder et al .
2019/0190694 A1 6/2019 Joye et al .
2019/0243990 A1 8/2019 Wei et al .
2019/0325132 A1 10/2019 Manthos et al .
2019/0327076 Al 10/2019 Weber et al .

“ Theory of relativity ” , Retrieved From https://en.wikipedia.org/wiki/
Theory of relativity , Retrieved on : Feb. 12 , 2018 , 6 Pages .
" Time dilation ” , Retrieved From https://www.britannica.com/science/
time - dilation , Retrieved on : Feb. 12 , 2018 , 4 Pages .
“ Velocity ” , Retrieved from https://en.wikipedia.org/wiki/Velocity ,
Retrieved on : Feb. 12 , 2018 , 7 Pages .
Kohlbrenne , et al . , “ Trusted Browsers for Uncertain Times ” , https : //
cseweb.ucsd.edu/~dkohlbre/papers/uncertaintimes-slides.pdf , Retrieved
on : Feb. 12 , 2018 , 85 Pages .
Kohlbrenner , et al . , " Trusted Browsers for Uncertain Times ” , In
Proceedings of the 25th USENIX Security Symposium , Aug. 10 ,
2016 , pp . 463-480 .
Schwarz , et al . , “ Fantastic Timers and Where to Find Them :
High - Resolution Microarchitectural Attacks in JavaScript ” , In Pro
ceedings of International Conference on Financial Cryptography
and Data Security , Apr. 3 , 2017 , pp . 1-21 .
Schwarz , et al . , “ JavaScript Zero : Real JavaScript and Zero Side
Channel Attacks ” , In Proceedings of Network and Distributed
System Security Symposium , Feb. 18 , 2018 , pp . 1-15 .
“ Non Final Office Action Issued in U.S. Appl . No. 15 / 961,849 ” ,
dated Feb. 6 , 2020 , 18 Pages .
“ Non Final Office Action Issued in U.S. Appl . No. 15 / 980,648 ” ,
dated Jan. 24 , 2020 , 21 Pages .
“ Notice of Allowance Issued in U.S. Appl . No. 15 / 961,849 " , dated
May 14 , 2020 , 12 Pages .
Checkoway , et al . , “ Return - Oriented Programming without Returns ” ,
In Proceedings of the 17th ACM Conference on Computer and
Communications Security , Oct. 4 , 2010 , pp . 559-572 .
Hartel , et al . , “ Classification of APIs by Hierarchical Clustering ” , In
Proceedings of the 26th International Conference on Program
Comprehension , May 27 , 2018 , pp . 233-243 .
Ostrovsky , et al . , “ Optimal and Efficient Clock Synchronization
Under Drifting Clocks ” , In Proceedings of the 18th Annual ACM
Symposium on Principles of Distributed Computing , May 1 , 1999 ,
pp . 3-12 .

OTHER PUBLICATIONS

" Address space layout randomization ” , Retrieved from https : // en .
wikipedia.org/wiki/Address_space_layout_randomization , Retrieved
on : Feb. 12 , 2018 , 8 Pages .
Gras , et al . , “ ASLR on the Line : Practical Cache Attacks on the
MMU ” , In Proceedings of Network and Distributed System Secu
rity Symposium , Feb. 26 , 2017 , pp . 1-15 .
“ High Resolution Time Level 2 ” , Retrieved From http : //www.w3 .
org / TR / hr - time - 2 / , Mar. 1 , 2018 , 11 Pages .
“ Interpolation ” , Retrieved From https://en.wikipedia.org/wiki/
Interpolation , Retrieved on : Feb. 12 , 2018 , 6 Pages .
“ Observer (special relativity) ” , Retrieved From https : //en.wikipedia .
org / wiki / Observer_ (special_relativity) , Retrieved on : Feb. 12 , 2018 ,
3 Pages .
" Secure Systems ” , Retrieved From https://www.iaik.tugraz.at/content/
research / sesys / , Retrieved on : Feb. 12 , 2018 , 1 Page .
“ Security : SVG Filter Timing Attack ” , Retrieved From https : // bugs .
chromium.org/p/chromium/issues/detail?id=251711 , Jun . 19 , 2013 ,
6 Pages .
“ Speculative execution ” , Retrieved From https://en.wikipedia.org
wiki / Speculative_execution , Retrieved on : Feb. 12 , 2018 , 4 Pages .

Askarov , et al . , “ Predictive Black - Box Mitigation of Timing Chan
nels ” , In Proceedings of the 17th ACM Conference on Computer
and Communications Security , Oct. 4 , 2010 , pp . 297-307 .
" International Search Report & Written Opinion Issued in PCT
Patent Application No. PCT / US2019 / 026213 ” , dated Jul . 8 , 2019 ,
11 Pages .
“ International Search Report and Written Opinion Issued in PCT
Patent Application No. PCT / US2019 / 026232 ” , dated Jul . 8 , 2019 ,
10 Pages .
“ Final Office Action Issued in U.S. Appl . No. 15 / 980,648 ” , dated
Jul . 6 , 2020 , 18 Pages .
“ Notice of Allowance Issued in U.S. Appl . No. 15 / 980,648 ” , dated
Jan. 25 , 2021 , 15 Pages
Carrega , et al . , “ Data Log Management for Cyber - Security Pro
grammability of Cloud Services and Applications ” , In Proceedings
of the 1st ACM Workshop on Workshop on Cyber - Security Arms
Race , Nov. 15 , 2019 , pp . 47-52 .
Jenkins , et al . , “ Ghostbusting : Mitigating Spectre with Intraprocess
Memory Isolation ” , In Proceedings of the 7th Symposium on Hot
Topics in the Science of Security , Sep. 21 , 2020 , 11 Pages .

* cited by examiner

U.S. Patent Mar. 30 , 2021 Sheet 1 of 6 US 10,965,444 B2

100

WEB PLATFORM APPLICATION 102

EVENT LOOP 108

PAUSE TASK
112 JAVASCRIPT

PROGRAM
104

CALL RATE
TRACKING

110
WEB

PLATFORM
APIS
106

EXPLICIT CLOCK WARP
114

FIG . 1

U.S. Patent Mar. 30 , 2021 Sheet 2 of 6 US 10,965,444 B2

200

202
WHILE JAVASCRIPT PROGRAM IS RUNNING , CALL
RATE TRACKING MODULE STARTS TIMER FOR A

CURRENT BUCKET

204
CALL RATE TRACKING MODULE RECEIVES AND

COUNTS NUMBER OF CALLS / CALLBACKS MADE BY
JAVASCRIPT PROGRAM TO IMPLICIT CLOCK AND / OR

EXPLICIT CLOCK APIS

206
CALL RATE TRACKING MODULE DETERMINES THAT
TIMER STARTED AT BLOCK 202 HAS REACHED LIMIT

AND CLOSES CURRENT BUCKET

208
CALL RATE TRACKING MODULE RECORDS TOTAL

COUNT OF API CALLS / CALLBACKS MADE DURING THAT
BUCKET

210
TOTAL COUNT YES EXCEEDS
THRESHOLD ?

No

212 214
MARK AS BAD BUCKET MARK AS GOOD BUCKET

216
No LAST X

BUCKETS BAD ?

218
TRIGGER TIME DILATION FOR JAVASCRIPT PROGRAM
VIA PAUSE TASK MODULE AND / OR EXPLICIT CLOCK

WARP MODULE

END

FIG . 2

U.S. Patent Mar. 30 , 2021 Sheet 3 of 6 US 10,965,444 B2

300

OBSERVED TIME (TIME OBSERVED BY JAVASCRIPT PROGRAM)

20us

REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)

FIG . 3A

310

OBSERVED TIME (TIME OBSERVED BY JAVASCRIPT PROGRAM)

REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)

FIG . 3B

U.S. Patent Mar. 30 , 2021 Sheet 4 of 6 US 10,965,444 B2

320

5

OBSERVED TIME (TIME OBSERVED BY JAVASCRIPT PROGRAM)

REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)

FIG . 3C

U.S. Patent Mar. 30 , 2021 Sheet 5 of 6 US 10,965,444 B2

400

402
WHILE JAVASCRIPT PROGRAM IS RUNNING AND TIME
DILATION IS TURNED ON FOR THE PROGRAM , CALL
RATE TRACKING MODULE STARTS TIMER FOR A

CURRENT BUCKET

4042
CALL RATE TRACKING MODULE RECEIVES AND

COUNTS NUMBER OF CALLS / CALLBACKS MADE BY
JAVASCRIPT PROGRAM TO IMPLICIT CLOCK AND / OR

EXPLICIT CLOCK APIS

406
CALL RATE TRACKING MODULE DETERMINES THAT
TIMER STARTED AT BLOCK 402 HAS REACHED LIMIT

AND CLOSES CURRENT BUCKET

408
CALL RATE TRACKING MODULE RECORDS TOTAL

COUNT OF API CALLS / CALLBACKS MADE DURING THAT
BUCKET

410
TOTAL COUNT YES EXCEEDS
THRESHOLD ?

No

412 414
MARK AS BAD BUCKET MARK AS GOOD BUCKET

418
SCALE UP TIME DILATION
APPLIED TO JAVASCRIPT

PROGRAM

416
BAD

> B BUCKETS WITHIN Y
RECENT
BUCKETS ?

BETWEEN A AND B

< A 420

SCALE DOWN TIME DILATION APPLIED TO
JAVASCRIPT PROGRAM

FIG . 4

500

U.S. Patent

STORAGE SUBSYSTEM 506

MEMORY SUBSYSTEM 508

FILE STORAGE SUBSYSTEM 510

ROM 520

RAM 518

INPUT DEVICES 512

Mar. 30 , 2021

BUS SUBSYSTEM 504

?

1
U

U

Sheet 6 of 6

PROCESSOR (S)
502

NETWORK INTERFACE 516

OUTPUT DEVICES 514

OTHER COMPUTING DEVICES AND NETWORKS

US 10,965,444 B2

FIG . 5

5 time .

US 10,965,444 B2
1 2

MITIGATING TIMING ATTACKS VIA consecutive number of time buckets . Upon making this
DYNAMICALLY TRIGGERED TIME determination , the computer system can trigger time dilation

DILATION with respect to the program , where the time dilation causes
the program to observe a dilated view of time relative to real

CROSS - REFERENCES TO RELATED
APPLICATIONS

BRIEF DESCRIPTION OF THE DRAWINGS
The present application is related to commonly - owned

U.S. patent application Ser . No. 15 / 961,849 , now U.S. Pat . FIG . 1 depicts a simplified block diagram of a software
No. 10,785,017 , entitled “ Mitigating Timing Attacks via 10 environment that implements the techniques of the present
Dynamically Scaled Time Dilation , ” which is filed concur- disclosure .
rently herewith . The entire contents of this related applica- FIG . 2 depicts a workflow for dynamically triggering time
tion are incorporated herein by reference for all purposes . dilation according to certain embodiments .

FIGS . 3A , 3B , and 3C depict graphs illustrating different
BACKGROUND 15 algorithms for warping an explicit clock according to certain

embodiments .
In computing , a timing attack is a type of side - channel FIG . 4 depicts a workflow for dynamically scaling time

attack (i.e. , an attack based on information gained from the dilation according to certain embodiments .
physical implementation of a computer system) in which an FIG . 5 depicts a simplified block diagram of a computer
attacker attempts to compromise the system by analyzing the 20 system according to certain embodiments .
amount of time it takes to complete one or more operations .
Every logical operation in a computer system takes some DETAILED DESCRIPTION
time to execute , and that time can differ based on the input (s)
to the operation . Accordingly , with sufficiently precise mea- In the following description , for purposes of explanation ,
surements of an operation's execution time , an attacker can 25 numerous examples and details are set forth in order to
create a time model for the operation and deduce its input (s) provide an understanding of various embodiments . It will be
(which may include a secret) . Recent highly publicized evident , however , to one skilled in the art that certain
security vulnerabilities that rely on timing attacks include embodiments can be practiced without some of these details ,
the Meltdown and Spectre vulnerabilities which affect most or can be practiced with modifications or equivalents
modern microprocessor architectures . 30 thereof .

Generally speaking , to carry out a timing attack , an
attacker needs to be able to quantify an operation's execu 1. Overview
tion time via a reference clock in other words , a clock in
which clock ticks arrive at a consistent rate . The attacker Embodiments of the present disclosure provide tech
may establish the reference clock by consulting an explicit 35 niques for mitigating timing attacks via “ time dilation ” -in
clock (i.e. , one that is derived from hardware signals and other words , dilating or warping the view of time of an
typically represented in either wall clock time or CPU time) . observer (e.g. , a potential attacker) relative to real time such
For example , the attacker may call an application program- that the observer cannot , or finds it very difficult to , establish
ming interface (API) that returns timestamp values as deter- a consistent reference clock for carrying out a timing attack .
mined by the system hardware . The attacker may also 40 According to a first set of embodiments , a computer
establish the reference clock by creating an implicit clock system can track the number of API calls and / or callbacks
(i.e. , one that is derived from an arbitrary unit of time made by an observer within each of a series of time
measure , without need for an explicit clock) . For example , windows , referred to as buckets . The API calls / callbacks
the attacker may track the number of times it can take some may be explicit clock APIs and / or APIs that can be used to
action or carry out some task (e.g. , call an API , run a 45 construct implicit clocks . If the system determines that the
calculation , etc.) while an operation executes and use that observer has exceeded a threshold number of API calls /
number to quantify the duration of the operation . callbacks for a predefined consecutive number of buckets ,

There are a number of existing approaches for mitigating the system can dynamic trigger (i.e. , turn - on) time dilation
timing attacks , such as clamping explicit clocks to a rela- with respect to that observer . This can include , e.g. , (1)
tively low resolution , altering runtime hardware frequencies , 50 injecting a random amount of wait time (i.e. , pausing) into
and adding noise or interference to such frequencies . How- the implicit clock API calls / callbacks called by the observer ,
ever , these existing approaches can be worked around and thereby preventing the observer from constructing a consis
thus fail to structurally prevent timing exploits . Additionally , tent implicit clock from those calls / callbacks , and / or (2)
since these existing approaches cause a computer system to randomly jittering / warping the time values returned by
deviate from ideal operating conditions , they negatively 55 explicit clock APIs to the observer , thereby preventing the
impact the experience of users interacting with the system observer from using those explicit clock APIs establish a
(e.g. , performance becomes worse , resource usage increases , consistent view of real time .
power efficiency decreases , etc.) . According to a second set of embodiments , the computer

system can dynamically scale the amount of time dilation
SUMMARY 60 that is introduced via (1) and (2) for the observer based on

the observer's continued behavior / activity . For example , if
Techniques for mitigating timing attacks via dynamically the observer continues to act “ badly ” (e.g. , issue a high

triggered time dilation are provided . According to one set of number of API calls / callbacks over an extended period of
embodiments , a computer system can track a count of API time) which indicates that the observer is likely perpetrating
calls or callbacks made by a program within each of a series 65 a timing attack or continuing to perpetrate such an attack , the
of time buckets . The computer system can further determine system may increase the amount of wait time injected into
that the count exceeds a threshold count for a predefined implicit clock API calls / callbacks called by the observer

US 10,965,444 B2
3 4

and / or increase the amount of jitter / warping of time values such as Meltdown and Spectre . JavaScript code , such as
returned by explicit clock APIs to the observer . Conversely , JavaScript program 104 of FIG . 1 , is perhaps one of the most
if the observer's behavior improves (e.g. , reduces its call / common vectors by which malicious code capable of per
callback activity to a normal level for an extended period of petrating a timing attack can find its way onto end - user
time) , the time dilation introduced via the wait time injection 5 systems . For instance , JavaScript program 104 may be
and explicit clock jittering / warping may be dialed back or surreptitiously injected into an online advertisement that is
even turned off entirely . then disseminated across a number of different websites via

With the two high - level concepts described above (dy- an ad network . Accordingly , it is desirable to have mitiga
namic triggering and dynamic scaling of time dilation) , the tions at the web platform level that prevent or make it
observer can run under ideal conditions , with no significant 10 difficult for JavaScript program 104 to carry out a timing
delay relative to real time , as long as the observer is attack .
well - behaved . However , as soon as the observer begins to Unfortunately , existing approaches to timing attack miti
exhibit behavior that is indicative of a timing attack , the gation suffer from various limitations and disadvantages that
system can introduce time dilation safeguards that prevent make them less than ideal solutions for this use case . For
the observer from establishing a consistent reference clock 15 examples , approaches that simply clamp explicit clocks to a
via either implicit clocks or explicit clocks . Further , as the coarse granularity or modify runtime frequencies introduce
observer becomes more or less aggressive in its activity / performance and power management problems that nega
behavior , the system can dynamically increase or decrease tively affect the user experience of end - users interacting
the degree of time dilation as appropriate . In this way , these with the web platform (e.g. , animations begin to stutter , UI
techniques can mitigate timing attacks in a manner that is 20 responsiveness degrades , web pages are slow to load , etc.) .
more intelligent , efficient , and performant than existing These problems are particularly acute on mobile devices
solutions . which depend on efficient resource usage and power man
The foregoing and other aspects of the present disclosure agement for day - long operation .

are described in further detail in the sections that follow . For To address the foregoing and other similar issues , web
purposes of illustration , the embodiments and examples 25 platform application 102 of FIG . 1 is enhanced to include ,
below are presented in the context of a web platform within event loop 108 , a call rate tracking module 110 , a
application (e.g. , a web browser) that runs JavaScript code pause task module 112 , and an explicit clock warp module
downloaded by the application . In these examples / embodi- 114. At a high level , modules 110-114 can interoperate to
ments , the JavaScript code is the observer / potential perpe- implement two novel timing attack mitigation mechanisms
trator of timing attacks and the web platform application is 30 according to embodiments of the present disclosure : (1)
the entity that implements the techniques of the present dynamically triggered time dilation and (2) dynamically
disclosure . This is a valuable use case to consider , since scaled time dilation .
JavaScript and web content in general is typically the most With respect mechanism (1) (described in further detail
common vector by which unknown , potentially malicious in section (3) below) , call rate tracking module 110 can track
code can reach end - user systems . However , it should be 35 the number of calls made by JavaScript program 104 to web
appreciated the present disclosure is not solely limited to this platform APIs 106 that enable program 104 to construct an
context and can be applied to other contexts in which timing implicit clock (e.g. , callback functions) and / or consult an
attack mitigations are useful and appropriate . By way of explicit clock (e.g. , timestamp APIs) . Note that this is
example , the techniques described herein are equally appli- possible because event loop 108 acts as a chokepoint for all
cable for mitigating timing attacks in system - level software . 40 of the API invocations made by JavaScript program 104 and

other processes of web platform application 102. Call rate
2. Software Environment tracking module 110 can perform this tracking on a per

bucket basis , where each bucket is a time window of a
FIG . 1 is a simplified block diagram of a software predefined period (e.g. , 200 milliseconds) , and can compare

environment 100 in which embodiments of the present 45 the number of calls / callbacks made within each bucket to a
disclosure may be implemented . As shown , software envi- threshold . If call rate tracking module 110 determines that
ronment 100 includes a web platform application 102 , which the threshold has been exceeded for a certain number of
may be a web browser or any other software application that consecutive buckets , event loop 108 can trigger time dilation
hosts / presents web content , and a JavaScript program 104 for JavaScript program 104 by inserting wait time into each
that is downloaded and run by application 102. Web plat- 50 implicit clock API call / callback via pause task module 112 ,
form application 102 includes a set of web platform APIs and / or warping the time values returned by explicit clock
106 that can be invoked by JavaScript program 104 . APIs via explicit clock warp module 114. The end result of
Examples of such APIs include standard JavaScript APIs this is that JavaScript program 104 begins to observe a
(including callback functions such as setTimeout () setInt- dilated view of time that is inconsistent with real time , and
erval () etc.) , Document Object Model (DOM) APIs , 55 thus makes it difficult or impossible for program 104 to
HTML5 APIs , browser - specific APIs , and so on . construct a consistent reference clock in order to perpetrate
Web platform application 102 also includes an event loop a timing attack .

108 that adheres to the HTML5 event loop standard and is Significantly , since the wait time insertion and explicit
generally responsible for coordinating the execution of clock warping is only turned - on in scenarios where
different processes within web platform application 102 , 60 JavaScript program 104 is deemed to be a potential attacker
including JavaScript program 104. In one set of embodi- (via the bucket - based call tracking above) , this approach
ments , event loop 108 can execute code each time a given does not introduce any performance or resource usage
API 106 is invoked by JavaScript program 104 and thus can overhead for web content that is well - behaved . This is a
act as a “ chokepoint ” for all such API invocations . significant advantage over existing mitigation techniques ,
As alluded to in the Background section , the mitigation of 65 which tend to turn - on heavy - handed mitigations by default

timing attacks is becoming an increasingly important issue and thus introduce performance / power problems for all web
with the emergence of far - reaching security vulnerabilities pages , whether good or bad .

US 10,965,444 B2
5 6

With respect to mechanism (2) (described in further detail clock that is based on hardware signals and represented as ,
in section (5) below) , call rate tracking module 110 can e.g. , wall clock time or CPU time) . Examples of the former
continue to track the number of calls / callbacks made by include JavaScript API calls or callbacks such as setTim
JavaScript program 104 to web platform APIs 106 on a eout () and setInterval () Examples of the latter include any
per - bucket basis once time dilation is turned on (either via 5 API that returns a hardware - derived timestamp or time
the dynamic triggering mechanism of (1) or via a static value .
configuration) . Based on this continued tracking , call rate At block 206 , call rate tracking module 110 can determine
tracking module 110 can apply one or more policies to that the timer started at block 202 has reached a predefined
determine whether JavaScript program 104 is becoming time limit (e.g. , 200 milliseconds) and close the current
more or less aggressive in its API calling behavior (indicat- 10 bucket . In addition , module 110 can record the total number
ing that the program is likely continuing to , or is no longer of API calls / callbacks counted during that bucket (block
or perhaps never was , attempting to perpetrate a timing 208) and check whether the total number exceeds a pre
attack) . This , in turn , can cause the system to scale up or defined threshold (block 210) . If so , call rate tracking
down the degree of time dilation for JavaScript program 104 module 110 can mark the bucket as a " bad " bucket (block
(via pause task module 112 and explicit clock warp module 15 212) . Otherwise , call rate tracking module 110 can mark the
114) in a proportional way . For example , if JavaScript bucket as a “ good ” bucket (block 214) .
program 104 continues to call implicit or explicit clock- Once call rate tracking module 110 has marked the bucket
related APIs at a high frequency for an extended period of appropriately , module 110 can check whether the last X
time , the system can conclude that program 104 is continu- consecutive buckets were bad buckets , where X is some
ing to perpetrate a timing attack and can ramp up the amount 20 predefined number (block 216) . If not , call rate tracking
of wait time inserted into each implicit clock - related API module 110 can return to block 202 in order to start a timer
call / callback , and / or the amount of warping applied to for a new bucket and repeat the preceding steps .
explicit clock time values . This ramping - up process can However , if the last X consecutive buckets were in fact
continue as long as JavaScript program 104 persists in its bad buckets , it can be concluded that JavaScript program
bad behavior , and may ultimately cause program 104 to be 25 104 is exhibiting bad behavior that is indicative of a timing
terminated . attack . As a result , web platform application 102 can trigger

Conversely , if the API call / callback rate of JavaScript (i.e. , turn - on) time dilation with respect to JavaScript pro
program 104 drops to a low or normal level for an extended gram 104 by leveraging pause task module 112 and / or
period of time , event loop 108 can conclude that program explicit clock warp module 114 (block 218) .
104 is now well - behaved and can begin ramping down the 30 For example , according to one set of embodiments , for
amount of wait time inserted into each implicit clock - related each successive call that JavaScript program 104 makes to
API call / callback , and / or the amount of warping applied to an API function or callback that relates to implicit clock
explicit clock time values . This ramping - down process can creation , vent loop 108 can (via , e.g. , a task scheduler)
continue as long as JavaScript program 104 persists in its instruct pause task module 112 to insert a randomly gener
good behavior , and may ultimately cause time dilation to be 35 ated amount of wait time into the API execution flow , before
turned off entirely for program 104 . the call / callback returns to program 104. The result of this is
Thus , with mechanism (2) , web platform application 102 that the API never completes in a consistent amount of time

can more intelligently apply its timing attack mitigations in from the perspective of JavaScript program 104 , which
a manner that is proportional and responsive to the real - time makes it difficult or impossible for program 104 to count
activity / behavior of JavaScript program 104 . 40 instances of these API calls / callbacks to construct an

It should be appreciated that software environment 100 of implicit clock . In a particular embodiment , the amount of
FIG . 1 is illustrative and not intended to limit embodiments wait time that pause task module 112 inserts into each API
of the present disclosure . For example , while the various call / callback can be a random value from 0 to 255 micro
entities shown in this figure are arranged according to a seconds .
particular configuration , other configurations are also pos According to another set of embodiments , for each suc
sible . Further , these entities may include various subcom- cessive call that JavaScript program 104 makes to an API
ponents and / or functions that are not specifically described . function that relates to an explicit clock , event loop 108 can
One of ordinary skill in the art will recognize other varia- (via , e.g. , a task scheduler) instruct explicit clock warp
tions , modifications , and alternatives . module 114 to randomly dilate or warp the time value that

50 is returned by the API to program 104. The result of this is
3. Dynamically Triggering Time Dilation that JavaScript program 104 never receives a consistent

view of time from these explicit clock APIs , which makes it
FIG . 2 depicts a workflow 200 that provides additional difficult or impossible for program 104 to create a consistent

details regarding the processing that may be performed by reference clock based on the explicit clocks . There are
web platform application 102 and its constituent compo- 55 different ways in which explicit clock warp module 114 can
nents (e.g. , call rate tracking module 110 , pause task module warp the time values that are generated by the explicit clock
112 , explicit clock warp module 114) for dynamically trig- APIs , which include clamping / random jitter and applying
gering time dilation with respect to JavaScript program 104 randomly - generated linear or higher - order functions that
according to certain embodiments . transform real time to warped time . These various tech

At block 202 , while JavaScript program 104 is running , 60 niques are discussed in section (4) below .
call rate tracking module 110 can start a timer for a current According to yet other embodiments , event loop 108 can
bucket (i.e. , time window) . At block 204 , call rate tracking trigger any combination or subset of the time dilation
module 110 can receive and count the number of calls / techniques described above according to various policies .
callbacks made by JavaScript program 104 to web platform For example , if call rate tracking module 110 determines that
APIs 106 that either enable program 104 to construct an 65 JavaScript program 104 has invoked a threshold number of
implicit clock (i.e. , a clock based on an arbitrary , internal explicit clock APIs for X consecutive bad buckets (but not
unit of time measure) or consult an explicit clock (i.e. , a a threshold number of APIs related to implicit clocks) , event

45

10

US 10,965,444 B2
7 8

loop 108 may solely trigger explicit clock warping . As In various embodiments , the transformation function
another example , if call rate tracking module 110 determines described above can be made as complex as needed (by , e.g. ,
that JavaScript program 104 has invoked a threshold number adding more variables / dimensions) in order to make it
of APIs related to implicit clocks for X consecutive bad difficult for an attacker to reverse - engineer the function and
buckets (but not a threshold number of explicit clock APIs) , 5 determine how time is being warped . In some embodiments ,
event loop 108 may solely trigger wait time insertion . As yet multiple transformation functions may be spliced together
another example , a large number of API calls / callbacks for for further security .
implicit clocks may also trigger explicit clock warping , and
vice versa . All of these permutations , and more , are within 5. Dynamically Scaling Time Dilation
the scope of the present disclosure .

It should be appreciated that workflow 200 of FIG . 2 is FIG . 4 depicts a workflow 400 that provides additional
illustrative and various modifications are possible . For details regarding the processing that may be performed by
example , although workflow 200 shows that a single web platform application 102 and its constituent compo
instance of call rate tracker module 110 can track the counts nents (e.g. , call rate tracking module 110 , pause task module
of both explicit and implicit clock API calls / callbacks , in 15 112 , explicit clock warp module 114) for dynamically scal
some cases two separate instances of module 110 may be ing time dilation with respect to JavaScript program 104
used for these purposes respectively . Further , the various according to certain embodiments . Workflow 400 assumes
steps shown in workflow 200 can be sequenced differently , that time dilation has already been turned on for JavaScript
certain steps can be combined as needed , and certain steps program 104 , either by virtue of the dynamic triggering
can be omitted as needed . One of ordinary skill in the art will 20 mechanism described in section (3) or via a static (e.g. ,
recognize other variations , modifications , and alternatives . default) configuration .

Blocks 402-414 of workflow 400 are substantially similar
4. Warping Explicit Clocks to blocks 302-314 of workflow 300. In particular , at block

402 , call rate tracking module 110 can start a timer for a
As mentioned above , at the time of determining that time 25 current bucket (i.e. , time window) . While this timer is

dilation should be turned on with respect to JavaScript running , call rate tracking module 110 can receive and count
program 104 , web platform application 102 can leverage the number of calls / callbacks made by JavaScript program
explicit clock warp module 114 in order to dilate or warp the 104 to web platform APIs 106 that either enable program
time values that are returned by explicit clocks APIs to 104 to construct an implicit clock (i.e. , a clock based on an
program 104 , thereby preventing program 104 from observ- 30 arbitrary , internal unit of time measure) or consult an explicit
ing a consistent view of time via explicit clocks . Generally clock (i.e. , a clock that is based on hardware signals and
speaking , explicit clock warp module 114 can use any represented as , e.g. , wall clock time or CPU time) (block
algorithm to transform the time values returned by the 404) .
explicit clock APIs (referred to as real time) into the time At block 406 , call rate tracking module 110 can determine
values observed by JavaScript program 104 (referred to as 35 that the timer started at block 402 has reached a predefined
observed time) , as long as program 104's observed view of time limit (e.g. , 200 milliseconds) and close the current
time is non - decreasing . bucket . In addition , module 110 can record the total number

According to one set of embodiments , explicit clock warp of API calls / callbacks counted during that bucket (block
module 114 can perform this warping by clamping the time 408) and check whether that total number exceeds a pre
values to a relatively coarse granularity , such as 5 or 20 40 defined threshold (block 410) . If so , call rate tracking
microsecond intervals , and then randomly jittering the point module 110 can mark the bucket as a bad bucket (block 412) .
at which a particular time value is clamped (i.e. , performing Otherwise , call rate tracking module 110 can mark the
the clamping at different random times within each clamping bucket as a good bucket (block 414) .
period) . These concepts are visualized in FIGS . 3A and 3B Once call rate tracking module 110 has marked the bucket
according to an embodiment . In particular , FIG . 3A depicts 45 appropriately , module 110 can check the number of bad
a graph 300 with real time on the x - axis and observed time buckets have been encountered within some range of Y
on the y - axis , where the y values (i.e. , time observed by recent buckets (block 416) . Note that this condition is
JavaScript program 104) are clamped at regular 20 micro- different from that used in the triggering workflow (which
second intervals . FIG . 3B depicts a graph 310 where the y looks at consecutive bad buckets) , since when scaling time
values are clamped , but the point at which the clamping 50 dilation it is generally more useful to look at patterns of
occurs is randomly jittered . This results in clamping periods behavior over non - contiguous periods of time (to account
of different random lengths . for scenarios where JavaScript program 104 may temporar

According to another set of embodiments , explicit clock ily halt or slow down its call rate activity in an attempt to
warp module 114 can perform the warping by using a linear fool mitigation mechanisms) .
transformation function such as y = ax + b where variables a 55 If the number of bad buckets encountered within the last
and b are chosen randomly , or a nonlinear transformation Y buckets is between some low watermark A and some high
function such as y = ax ' + b where variables a , b , and t are watermark B , it can be concluded that the call rate behavior
chosen randomly . An example nonlinear transformation of JavaScript program 104 is about the same as before (i.e. ,
function is shown as graph 320 in FIG . 3C . One advantage has gotten neither better nor worse) and call rate tracking
of using these transformation functions over the random 60 module 110 can return to block 402 in order to start a timer
jitter technique is that the delay experienced by JavaScript for a new bucket and repeat the preceding steps . Note that
program 104 is less variable ; in the case of the transforma- in this case , pause task module 112 and explicit clock warp
tion functions , the maximum delay will be defined by the module 114 will continue to insert wait time and warp
function itself , whereas with random jittering the maximum explicit clock values for JavaScript program 104 in accor
delay may be as high as twice the clamping interval (depend- 65 dance with what they were doing before .
ing upon how the clamping turnover points are randomly On the other hand , if the number of bad buckets encoun
determined) . tered within the last Y buckets is greater than the high

US 10,965,444 B2
9 10

watermark B , it can be concluded that the call rate behavior / a minimum threshold (indicating that the call rate activity /
activity of JavaScript program 104 is increasing / getting behavior of JavaScript program 104 has gotten progressively
worse . In this case , high watermark B can be incremented / better) , application 102 may completely turn off time dila
increased and web platform application 102 can scale up the tion for program 104. In this scenario , time dilation may be
degree of time dilation applied to JavaScript program 104 5 triggered again per workflow 300 if JavaScript program 104
(block 418) . For example , if pause task module 112 was begins exhibiting bad behavior again in the future . previously inserting a randomly generated amount of wait
time into the API execution flow according to a certain range 6. Leveraging Telemetry
(e.g. , 0 to 255 microseconds) , module 112 can increase the
top value of this range such that the maximum possible wait 10 In some embodiments , web platform application 102 can
time is increased . Further , if explicit clock warp module 114 include a telemetry component that enables it to communi
was previously warping the time values returned by explicit cate information regarding the time dilation performed with
clock APIs to program 104 according to some clamping respect to JavaScript program 104 and other downloaded
interval and some amount of random jitter , module 114 can JavaScript code to one or more remote servers . Examples of
increase the clamping interval and / or range of random jitter , 15 such information include the web pages / URLs comprising
such that the time observed by JavaScript program 104 is program 104 , the measured call rate activity of program 104 ,
even further removed from real time . Call rate tracking whether time dilation was triggered for program 104 ,
module 110 can then return to block 402 in order to start a whether time dilation was scaled for program 104 , the
timer for a new bucket and repeat the preceding steps . particular parameters used for the time dilation triggering /

Finally , if the number of bad buckets encountered within 20 scaling , system performance parameters when time dilation
the last Y buckets is less than the low watermark A , it can was turned on , and so on .
be concluded that the call rate behavior / activity of The servers can then aggregate this information across a
JavaScript program 104 is decreasing / getting better . In this large population of applications / users and determine statis
case , low watermark A can be decremented / decreased and tics and trends which can be used for various purposes . For
web platform application 102 can scale down the degree of 25 example , in one set of embodiments , the servers can identify
time dilation applied to JavaScript program 104 (block 420) . a “ whitelist " of web pages that are highly unlikely to contain
For example , if pause task module 112 was previously JavaScript code that is attempting to perpetrate a timing
inserting a randomly generated amount of wait time into the attack , as well as a “ blacklist ” of web pages that are highly
API execution flow according to a certain range , module 112 likely to contain such malicious JavaScript code . The
can decrease the top value of this range such that the 30 whitelist and blacklist can then be communicated back to
maximum possible wait time is decreased . Further , if web platform application 102 (and / or to other client appli
explicit clock warp module 114 was previously warping the cations such as anti - virus / anti - malware software) , which can
time values returned by explicit clock APIs to program 104 uses these lists to , e.g. , block user access to blacklisted sites ,
according to some clamping interval and some amount of turn off time dilation by default for whitelisted sites , and / or
random jitter , module 114 can decrease the clamping inter- 35 implement more relaxed time dilation policies / parameters /
val and / or range of random jitter , such that the time observed rules for whitelisted sites .
by JavaScript program 104 is less removed from real time . As another example , the statistics determined by the
Call rate tracking module 110 can then return to block 402 remote servers can be used to inform and fine tune the time
in order to start a timer for a new bucket and repeat the dilation triggering and scaling algorithms described above ,
preceding steps . 40 such that they perform as expected and without unnecessary

Generally speaking , in various embodiments , web plat- or burdensome performance penalties . For instance , the
form application 102 can scale up or down the wait time remote servers may determine that one particular algorithm
inserted by pause task module 112 and warping performed used to perform explicit clock warping results in excessive
by explicit clock warp module 114 either independently or stuttering on a few popular websites , which may instigate a
in a combined manner according to various policies . For 45 change to a different algorithm . Further , the remote servers
example , if call rate tracking module 110 detects a signifi- may determine that the scaling algorithm may cause a
cant change in call rate behavior with respect to explicit particular non - malicious website to crash when loaded ,
clock APIs but not implicit clock APIs , application 102 may which may result in a modification to the scaling parameters
solely scale explicit clock warping . Conversely , if call rate to avoid this incompatibility . One of ordinary skill in the art
tracking module 110 detects a significant change in call rate 50 will recognize other possible use cases for this collected
behavior with respect to implicit clock APIs but not explicit data .
clock APIs , application 102 may solely scale wait time
insertion . As another example , a significant change in behav 7. Example Computer System
ior with respect to implicit clocks may also cause scaling of
explicit clock warping , and vice versa . All of these permu- 55 FIG . 5 is a simplified block diagram illustrating the
tations , and more , are within the scope of the present architecture of an example computer system 500 according
disclosure . to certain embodiments . Computer system 500 (and / or

Further , although not shown in FIG . 4 , in some embodi- equivalent systems / devices) may be used to run any of the
ments web platform application 102 may take special mea- software described in the foregoing disclosure , including
sures if JavaScript program 104 behaves exceptionally well 60 web platform application 102 of FIG . 1. As shown in FIG .
or badly over an extended period of time . For instance , if 5 , computer system 500 includes one or more processors 502
high watermark B reaches a maximum threshold (indicating that communicate with a number of peripheral devices via a
that the call rate activity / behavior of JavaScript program 104 bus subsystem 504. These peripheral devices include a
has gotten progressively worse) , application 102 may simply storage subsystem 506 (comprising a memory subsystem
terminate the process associated with the program rather 65 508 and a file storage subsystem 510) , user interface input
than continuing to scale the time dilation experienced by the devices 512 , user interface output devices 514 , and a net
program any further . Similarly , if low watermark A reaches work interface subsystem 516 .

versa .

10

15

30

US 10,965,444 B2
11 12

Bus subsystem 504 can provide a mechanism for letting that specific operations described as being implemented in
the various components and subsystems of computer system software can also be implemented in hardware and vice
500 communicate with each other as intended . Although bus
subsystem 504 is shown schematically as a single bus , The specification and drawings are , accordingly , to be
alternative embodiments of the bus subsystem can utilize 5 regarded in an illustrative rather than restrictive sense . Other
multiple busses . arrangements , embodiments , implementations and equiva

Network interface subsystem 516 can serve as an inter lents will be evident to those skilled in the art and may be
face for communicating data between computer system 500 employed without departing from the spirit and scope of the
and other computer systems or networks . Embodiments of present disclosure as set forth in the following claims .
network interface subsystem 516 can include , e.g. , an Eth What is claimed is : ernet module , a Wi - Fi and / or cellular connectivity module , 1. A computer system comprising : and / or the like . a computer hardware processor ; and User interface input devices 512 can include a keyboard , a non - transitory computer readable storage medium hav pointing devices (e.g. , mouse , trackball , touchpad , etc.) , a ing stored thereon program code that , when executed touch - screen incorporated into a display , audio input devices by the computer hardware processor , causes the com (e.g. , voice recognition systems , microphones , etc.) , motion puter hardware processor to :
based controllers , and other types of input devices . In track a count of application programming interface
general , use of the term “ input device ” is intended to include (API) calls or callbacks made by a program within
all possible types of devices and mechanisms for inputting 20 each of a series of time buckets ;
information into computer system 500 . determine that the count exceeds a threshold count for

User interface output devices 514 can include a display a predefined consecutive number of time buckets ;
subsystem and non - visual output devices such as audio and
output devices , etc. The display subsystem can be , e.g. , a upon determining that the count exceeds the threshold
transparent or non - transparent display screen such as a 25 count for the predefined consecutive number of time
liquid crystal display (LCD) or organic light - emitting diode buckets , trigger time dilation with respect to the
(OLED) display that is capable of presenting 2D and / or 3D program , wherein the time dilation causes the pro
imagery . In general , use of the term “ output device ” is gram to observe a dilated view of time relative to real
intended to include all possible types of devices and mecha time by modifying , for at least one API call or
nisms for outputting information from computer system 500 . callback made by the program , an execution time or

a return time value of the API call or callback . Storage subsystem 506 includes a memory subsystem 508
and a file / disk storage subsystem 510. Subsystems 508 and 2. The computer system of claim 1 wherein the count of

API calls or callbacks include one or more calls or callbacks 510 represent non - transitory computer - readable storage to APIs usable by the program for constructing an implicit media that can store program code and / or data that provide 35 clock .
the functionality of embodiments of the present disclosure . 3. The computer system of claim 2 wherein triggering Memory subsystem 508 includes a number of memories time dilation with respect to the program comprises :
including a main random access memory (RAM) 518 for for each successive call or callback made by the program
storage of instructions and data during program execution to an API usable for constructing an implicit clock ,
and a read - only memory (ROM) 520 in which fixed instruc- 40 inserting a random amount of wait time into the call or
tions are stored . File storage subsystem 510 can provide callback of the API .
persistent (i.e. , non - volatile) storage for program and data 4. The computer system of claim 1 wherein the count of
files , and can include a magnetic or solid - state hard disk API calls or callbacks include one or more calls to explicit
drive , an optical drive along with associated removable clock APIs configured to return time values derived from
media (e.g. , CD - ROM , DVD , Blu - Ray , etc.) , a removable or 45 one or more hardware signals of the computer system .
non - removable flash memory - based drive , and / or other 5. The computer system of claim 4 wherein triggering
types of storage media known in the art . time dilation with respect to the program comprises :

It should be appreciated that computer system 500 is for each successive call made by the program to an
illustrative and other configurations having more or fewer explicit clock API , warping the time value returned by
components than computer system 500 are possible . the explicit clock API before passing the time value to

The above description illustrates various embodiments of the program .
the present disclosure along with examples of how aspects 6. The computer system of claim 5 wherein warping the
of these embodiments may be implemented . The above time value returned by the explicit clock API comprises :
examples and embodiments should not be deemed to be the transforming the time value using a randomly determined
only embodiments , and are presented to illustrate the flex- 55 linear or non - linear transformation function .
ibility and advantages of the present disclosure as defined by 7. The computer system of claim 1 wherein the program
the following claims . For example , although certain embodi- code further causes the computer hardware processor to :
ments have been described with respect to particular process transmit , to one or more remote servers , information
flows and steps , it should be apparent to those skilled in the pertaining to the program and the triggering of the time
art that the scope of the present disclosure is not strictly 60 dilation with respect to the program , the information
limited to the described flows and steps . Steps described as being useable by the one or more remote servers for
sequential may be executed in parallel , order of steps may be tuning how the time dilation is implemented .
varied , and steps may be modified , combined , added , or 8. A method for mitigating timing attacks via dynamically
omitted . As another example , although certain embodiments triggered time dilation , the method comprising :
have been described using a particular combination of 65 tracking , by a computer system , a count of application
hardware and software , it should be recognized that other programming interface (API) calls or callbacks made
combinations of hardware and software are possible , and by a program within each of a series of time buckets ;

50

20

US 10,965,444 B2
13 14

determining , by the computer system , that the count track a count of application programming interface (API)
exceeds a threshold count for a predefined consecutive calls or callbacks made by a program within each of a
number of time buckets ; and series of time buckets ;

upon determining that the count exceeds the threshold determine that the count exceeds a threshold count for a
count for the predefined consecutive number of time 5 predefined consecutive number of time buckets ; and
buckets , triggering , by the computer system , time dila upon determining that the count exceeds the threshold
tion with respect to the program , wherein the time count for the predefined consecutive number of time
dilation causes the program to observe a dilated view of buckets , trigger time dilation with respect to the pro
time relative to real time by modifying , for at least one gram , wherein the time dilation causes the program to

observe a dilated view of time relative to real time by API call or callback made by the program , an execution 10
time or a return time value of the API call or callback . modifying , for at least one API call or callback made by

9. The method of claim 8 wherein the count of API calls the program , an execution time or a return time value
of the API call or callback . or callbacks include one or more calls or callbacks to APIS

usable by the program for constructing an implicit clock . 16. The non - transitory computer readable storage medium
10. The method of claim 9 wherein triggering time 15 of claim 15 wherein the count of API calls or callbacks

dilation with respect to the program comprises : include one or more calls or callbacks to APIs usable by the
for each successive call or callback made by the program program for constructing an implicit clock .

to an API usable for constructing an implicit clock , 17. The non - transitory computer readable storage medium
inserting a random amount of wait time into the call or of claim 16 wherein triggering time dilation with respect to
callback of the API . the program comprises :

for each successive call or callback made by the program 11. The method of claim 8 wherein the count of API calls
or callbacks include one or more calls to explicit clock APIs to an API usable for constructing an implicit clock ,

inserting a random amount of wait time into the call or configured to return time values derived from one or more callback of the API . hardware signals of the computer system .
12. The method of claim 11 wherein triggering time 25 18. The non - transitory computer readable storage medium

dilation with respect to the program comprises : of claim 15 wherein the count of API calls or callbacks
for each successive call made by the program to an include one or more calls to explicit clock APIs configured

to return time values derived from one or more hardware explicit clock API , warping the time value returned by
the explicit clock API before passing the time value to signals of the computer system .
the program . 19. The non - transitory computer readable storage medium

13. The method of claim 12 wherein warping the time 18 wherein triggering time dilation with respect to the
value returned by the explicit clock API comprises : program comprises :

for each successive call made by the program to an transforming the time value using a randomly determined
linear or non - linear transformation function . explicit clock API , warping the time value returned by

14. The method of claim 8 wherein the method further 35 the explicit clock API before passing the time value to
the program . comprises :

transmitting , to one or more remote servers , information 20. The non - transitory computer readable storage medium
pertaining to the program and the triggering of the time of claim 15 wherein the program code further causes the
dilation with respect to the program , the information computer system to :

transmit , to one or more remote servers , information being useable by the one or more remote servers for 40
tuning how the time dilation is implemented . pertaining to the program and the triggering of the time

15. A non - transitory computer readable storage medium dilation with respect to the program , the information
having stored thereon program code executable by a com being useable by the one or more remote servers for
puter system , the program code causing the computer sys tuning how the time dilation is implemented .
tem to :

30

