a2 United States Patent

Weber et al.

US010965444B2

ao) Patent No.: US 10,965,444 B2
45) Date of Patent: *Mar. 30, 2021

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

MITIGATING TIMING ATTACKS VIA
DYNAMICALLY TRIGGERED TIME
DILATION

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Jason Weber, Medina, WA (US); Tobin

Titus, Kirkland, WA (US); Daniel
Libby, Kirkland, WA (US); Brian
Manthos, Bellevue, WA (US); Colin
Pacitti, Seattle, WA (US); Pengxiang
Zhao, Bellevue, WA (US); Matthew
Miller, Seattle, WA (US); Jordan
Thomas Rabet, Secattle, WA (US);
John Hazen, Kirkland, WA (US)

Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(Us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 261 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/961,830
Filed: Apr. 24, 2018

Prior Publication Data

US 2019/0327075 Al Oct. 24, 2019

Int. CL.
HO04L 9/00 (2006.01)
U.S. CL
CPC ... HO4L 9/005 (2013.01); GO6F 2207/7223
(2013.01); HO4L 2209/046 (2013.01); HO4L
2209/08 (2013.01); HO4L 2209/122 (2013.01)
Field of Classification Search

CPC ... HO4L 9/005; HO4L 2209/122; HOAL
2209/046; HOAL 2209/08; GOGF
2207/7223

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,719,925 Bl 5/2014 Berg
8,775,564 Bl 7/2014 Smart et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2013172913 A2 112013
WO WO02013172913 * 112013 o GO6F 21/556
WO 2014065801 Al 5/2014

OTHER PUBLICATIONS

Acm 2670940—StopWatch: A Cloud Architecture for Timing Chan-
nel Mitigation, ACM Transactions on Information and System
Security, vol. 17, No. 2, Article 8, Publication date: Nov. 2014
(Year: 2014).*

(Continued)

Primary Examiner — Ali S Abyaneh

Assistant Examiner — Shu Chun Gao

(74) Attorney, Agent, or Firm — Fountainhead Law
Group P.C.

(57) ABSTRACT

Techniques for mitigating timing attacks via dynamically
triggered time dilation are provided. According to one set of
embodiments, a computer system can track a count of
application programming interface (API) calls or callbacks
made by a program within each of a series of time buckets.
The computer system can further determine that the count
exceeds a threshold count for a predefined consecutive
number of time buckets. Upon making this determination,
the computer system can trigger time dilation with respect to
the program, where the time dilation causes the program to
observe a dilated view of time relative to real time.

20 Claims, 6 Drawing Sheets

WHLLE JAVASCRI

RATE TRACKING

DILATION IS TURNED ON FOR THE PROGRAM, CALL

IPT PROGRAM IS RUNNING AND TIME

(G MODULE STARTS TIMER FOR A
CURRENT BUCKET

I3

CALL RATE TRAGKING MODILE RECEVES AND
‘GOUNTS NUMBER OF CALLS/CALLBACKS MADE BY
JAVASCRIPT PROGRAM TG IMPLICIT CLOCK ANDIOR
EXPLICIT CLOCK APIS

412

‘CALL RATE TRACKING MODULE DETERMINES THAT
TIMER STARTED AT BLOCK 402 HAS REACHED LIMIT
AND CLOSES CURRENT BLCKET

‘CALL RATE TRACKING MODULE RECORDS TOTAL
[COUNT OF AP CALLS/CALLBACKS MADE DURING THAT|

BUCKET

[s o svorer

| [arcs 000 sucrer

‘SCALE UP TIME DLLATION [
APPLIED TO JAVASCRIPT
PROGRAM

SCALE DOWN TIME DILATION APPLIED TO|
JAVASCRIPT PROGRAM

US 10,965,444 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,813,240 Bl
10,210,335 B2
10,509,714 B2
2003/0158854 Al
2005/0050324 Al

8/2014 Northup

2/2019 Madou et al.

12/2019 Ikeda et al.

8/2003 Yoshida et al.

3/2005 Corbett et al.

2005/0213761 Al 9/2005 Walmsley et al.

2010/0131936 Al 5/2010 Cheriton

2010/0146085 Al* 6/2010 Van Wie HO4L 67/1059
709/220

2012/0185700 Al

2012/0192283 Al

2013/0298236 Al

2013/0326625 Al

7/2012 Vidrine et al.
7/2012 Gu et al.
11/2013 Smith et al.
12/2013 Anderson et al.
2014/0123139 Al 5/2014 Fine et al.
2014/0282464 Al 9/2014 El-gillani
2014/0380474 Al* 12/2014 Paithane HO4L 63/145
726/23
2015/0067853 Al
2015/0082434 Al
2016/0014076 Al
2016/0014084 Al
2016/0218721 Al
2018/0048660 Al
2018/0068115 Al*
2018/0157827 Al
2018/0247069 Al
2018/0323960 Al
2019/0073665 Al
2019/0108330 Al
2019/0190694 Al
2019/0243990 Al
2019/0325132 Al
2019/0327076 Al

3/2015 Amrutkar et al.
3/2015 Sethumadhavan et al.
1/2016 Hansen
1/2016 Hansen
7/2016 Herbeck
2/2018 Paithane et al.
3/2018 Golovkin GO6F 21/53
6/2018 Kang et al.
8/2018 Tang et al.
11/2018 Courtney
3/2019 Belleville et al.
4/2019 Sikder et al.
6/2019 Joye et al.
8/2019 Wei et al.
10/2019 Manthos et al.
10/2019 Weber et al.

OTHER PUBLICATIONS

“Address space layout randomization”, Retrieved From https://en.
wikipedia.org/wiki/Address_space_layout_randomization, Retrieved
on: Feb. 12, 2018, 8 Pages.

Gras, et al., “ASLR on the Line: Practical Cache Attacks on the
MMU”, In Proceedings of Network and Distributed System Secu-
rity Symposium, Feb. 26, 2017, pp. 1-15.

“High Resolution Time Level 27, Retrieved From http://www.w3.
org/TR/hr-time-2/, Mar. 1, 2018, 11 Pages.

“Interpolation”, Retrieved From https://en.wikipedia.org/wiki/
Interpolation, Retrieved on: Feb. 12, 2018, 6 Pages.

“Observer (special relativity)”, Retrieved From https://en.wikipedia.
org/wiki/Observer (special_relativity), Retrieved on: Feb. 12, 2018,
3 Pages.

“Secure Systems”, Retrieved From https://www.iaik tugraz.at/content/
research/sesys/, Retrieved on: Feb. 12, 2018, 1 Page.

“Security: SVG Filter Timing Attack”, Retrieved From https://bugs.
chromium.org/p/chromium/issues/detail?id=251711, Jun. 19, 2013,
6 Pages.

“Speculative execution”, Retrieved From https://en. wikipedia.org/
wiki/Speculative_execution, Retrieved on: Feb. 12, 2018, 4 Pages.

“Theory of relativity”, Retrieved From https://en.wikipedia.org/wiki/
Theory_of relativity, Retrieved on: Feb. 12, 2018, 6 Pages.
“Time dilation”, Retrieved From https://www .britannica.com/science/
time-dilation, Retrieved on: Feb. 12, 2018, 4 Pages.

“Velocity”, Retrieved From https://en.wikipedia.org/wiki/Velocity,
Retrieved on: Feb. 12, 2018, 7 Pages.

Kohlbrenne, et al., “Trusted Browsers for Uncertain Times”, https://
cseweb.ucsd.edu/~dkohlbre/papers/uncertaintimes-slides.pdf, Retrieved
on: Feb. 12, 2018, 85 Pages.

Kohlbrenner, et al., “Trusted Browsers for Uncertain Times”, In
Proceedings of the 25th USENIX Security Symposium, Aug. 10,
2016, pp. 463-480.

Schwarz, et al.,, “Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural Attacks in JavaScript”, In Pro-
ceedings of International Conference on Financial Cryptography
and Data Security, Apr. 3, 2017, pp. 1-21.

Schwarz, et al., “JavaScript Zero: Real JavaScript and Zero Side-
Channel Attacks”, In Proceedings of Network and Distributed
System Security Symposium, Feb. 18, 2018, pp. 1-15.

“Non Final Office Action Issued in U.S. Appl. No. 15/961,849”,
dated Feb. 6, 2020, 18 Pages.

“Non Final Office Action Issued in U.S. Appl. No. 15/980,648”,
dated Jan. 24, 2020, 21 Pages.

“Notice of Allowance Issued in U.S. Appl. No. 15/961,849”, dated
May 14, 2020, 12 Pages.

Checkoway, et al., “Return-Oriented Programming without Returns”,
In Proceedings of the 17th ACM Conference on Computer and
Communications Security, Oct. 4, 2010, pp. 559-572.

Hartel, et al., “Classification of APIs by Hierarchical Clustering”, In
Proceedings of the 26th International Conference on Program
Comprehension, May 27, 2018, pp. 233-243.

Ostrovsky, et al., “Optimal and Efficient Clock Synchronization
Under Drifting Clocks”, In Proceedings of the 18th Annual ACM
Symposium on Principles of Distributed Computing, May 1, 1999,
pp. 3-12.

Askarov, et al., “Predictive Black-Box Mitigation of Timing Chan-
nels”, In Proceedings of the 17th ACM Conference on Computer
and Communications Security, Oct. 4, 2010, pp. 297-307.
“International Search Report & Written Opinion Issued in PCT
Patent Application No. PCT/US2019/026213”, dated Jul. 8, 2019,
11 Pages.

“International Search Report and Written Opinion Issued in PCT
Patent Application No. PCT/US2019/026232”, dated Jul. 8, 2019,
10 Pages.

“Final Office Action Issued in U.S. Appl. No. 15/980,648”, dated
Jul. 6, 2020, 18 Pages.

“Notice of Allowance Issued in U.S. Appl. No. 15/980,648”, dated
Jan. 25, 2021, 15 Pages

Carrega, et al., “Data Log Management for Cyber-Security Pro-
grammability of Cloud Services and Applications”, In Proceedings
of the 1st ACM Workshop on Workshop on Cyber-Security Arms
Race, Nov. 15, 2019, pp. 47-52.

Jenkins, et al., “Ghostbusting: Mitigating Spectre with Intraprocess
Memory Isolation”, In Proceedings of the 7th Symposium on Hot
Topics in the Science of Security, Sep. 21, 2020, 11 Pages.

* cited by examiner

U.S. Patent

JAVASCRIPT
PROGRAM
104

Mar. 30, 2021

Sheet 1 of 6

US 10,965,444 B2

WEB PLATFORM APPLICATION 102

WEB

> PLATFORM

APIs
106

-

EVENT Loop 108

CALL RATE
TRACKING
110

PAUSE TASK
112

ExpLiCIT CLock WARP

114

FIG. 1

%100

U.S. Patent Mar. 30, 2021 Sheet 2 of 6 US 10,965,444 B2

200

202~
WHILE JAVASCRIPT PROGRAM IS RUNNING, CALL

CURRENT BUCKET

204~ v
CALL RATE TRACKING MODULE RECEIVES AND
COUNTS NUMBER OF CALLS/CALLBACKS MADE BY
JAVASCRIPT PROGRAM TO IMPLICIT CLOCK AND/OR
EXPLICIT cLocK APIs

206~ ¢
CALL RATE TRACKING MODULE DETERMINES THAT

TIMER STARTED AT BLOCK 202 HAS REACHED LIMIT
AND CLOSES CURRENT BUCKET

208~ v
CALL RATE TRACKING MODULE RECORDS TOTAL

COUNT OF API CALLS/CALLBACKS MADE DURING THAT
BUCKET

210
YES

OTAL COUNT
EXCEEDS
THRESHOLD?

212

RATE TRACKING MODULE STARTS TIMER FORA [d——————

MARK AS BAD BUCKET MARK AS GOOD BUCKET

216

LasT X No

BUCKETS BAD?

218~
TRIGGER TIME DILATION FOR JAVASCRIPT PROGRAM
VIA PAUSE TASK MODULE AND/OR EXPLICIT CLOCK
WARP MODULE

END

FIG. 2

U.S. Patent Mar. 30, 2021 Sheet 3 of 6 US 10,965,444 B2

300
A
=
5
(D —
S
i
o
—
D- —
o
[&]
D
<
< —
=
>_
om
[an]
[————
&
L
o
[an]
o
< —_
=
=
L
= -
'_
[an]
L
0%
ol 20ps
[an]
(@]
>
REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)
FIG. 3A
310
A
=
=
0]
S
i
o
—
o
i
[&]
2
= —_
=
>_
om
[an]
[—
&
L
o
[an]
o
Y _
=
=
L
=
'_
[an]
L
r —
L
o
[an]
(@]
>
REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)

FIG. 3B

U.S. Patent Mar. 30, 2021 Sheet 4 of 6 US 10,965,444 B2

%320
A

OBSERVED TIME (TIME OBSERVED BY JAVASCRIPT PROGRAM)

REAL TIME (TIME RETURNED BY EXPLICIT CLOCK API)

FIG. 3C

U.S. Patent Mar. 30, 2021 Sheet 5 of 6 US 10,965,444 B2

400

402,

WHILE JAVASCRIPT PROGRAM IS RUNNING AND TIME
DILATION IS TURNED ON FOR THE PROGRAM, CALL
RATE TRACKING MODULE STARTS TIMER FOR A
CURRENT BUCKET

404~ v
CALL RATE TRACKING MODULE RECEIVES AND
COUNTS NUMBER OF CALLS/CALLBACKS MADE BY
JAVASCRIPT PROGRAM TO IMPLICIT CLOCK AND/OR
EXPLICIT cLocK APIs

406~ ¢
CALL RATE TRACKING MODULE DETERMINES THAT

TIMER STARTED AT BLOCK 402 HAS REACHED LIMIT
AND CLOSES CURRENT BUCKET

408~ v
CALL RATE TRACKING MODULE RECORDS TOTAL

COUNT OF API CALLS/CALLBACKS MADE DURING THAT
BUCKET

410
YES

OTAL COUNT
EXCEEDS
THRESHOLD?

M2~

MARK AS BAD BUCKET MARK AS GOOD BUCKET

SCALE UP TIME DILATION
APPLIED TO JAVASCRIPT
PROGRAM

BAD
BUCKETS WITHIN Y
RECENT
BUCKETS?

BETWEEN A AND B

420~

SCALE DOWN TIME DILATION APPLIED TO
JAVASCRIPT PROGRAM

FIG. 4

US 10,965,444 B2

Sheet 6 of 6

Mar. 30, 2021

U.S. Patent

009

g oI

SYJOMLIN NV $F0IAIQ
ONILNAINOD) H¥IHLO

\

—_— 91§ —
wmo_aﬂvm:&:o J0V4d3IN| @momwwoo&
NHOMLIN
70G WALSASANS Sng
as 01%
$30IA3Q LNdN oTC v
Q@ 1ndNi NILSASHNS 8IS Wvd | | 025 oY
VOIS I | | 555 waLsasang AMOWa
00G WIALSASANS 39VHOLS

US 10,965,444 B2

1
MITIGATING TIMING ATTACKS VIA
DYNAMICALLY TRIGGERED TIME
DILATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is related to commonly-owned
U.S. patent application Ser. No. 15/961,849, now U.S. Pat.
No. 10,785,017, entitled “Mitigating Timing Attacks via
Dynamically Scaled Time Dilation,” which is filed concur-
rently herewith. The entire contents of this related applica-
tion are incorporated herein by reference for all purposes.

BACKGROUND

In computing, a timing attack is a type of side-channel
attack (i.e., an attack based on information gained from the
physical implementation of a computer system) in which an
attacker attempts to compromise the system by analyzing the
amount of time it takes to complete one or more operations.
Every logical operation in a computer system takes some
time to execute, and that time can differ based on the input(s)
to the operation. Accordingly, with sufficiently precise mea-
surements of an operation’s execution time, an attacker can
create a time model for the operation and deduce its input(s)
(which may include a secret). Recent highly publicized
security vulnerabilities that rely on timing attacks include
the Meltdown and Spectre vulnerabilities which affect most
modern microprocessor architectures.

Generally speaking, to carry out a timing attack, an
attacker needs to be able to quantify an operation’s execu-
tion time via a reference clock—in other words, a clock in
which clock ticks arrive at a consistent rate. The attacker
may establish the reference clock by consulting an explicit
clock (i.e., one that is derived from hardware signals and
typically represented in either wall clock time or CPU time).
For example, the attacker may call an application program-
ming interface (API) that returns timestamp values as deter-
mined by the system hardware. The attacker may also
establish the reference clock by creating an implicit clock
(i.e., one that is derived from an arbitrary unit of time
measure, without need for an explicit clock). For example,
the attacker may track the number of times it can take some
action or carry out some task (e.g., call an APIL, run a
calculation, etc.) while an operation executes and use that
number to quantify the duration of the operation.

There are a number of existing approaches for mitigating
timing attacks, such as clamping explicit clocks to a rela-
tively low resolution, altering runtime hardware frequencies,
and adding noise or interference to such frequencies. How-
ever, these existing approaches can be worked around and
thus fail to structurally prevent timing exploits. Additionally,
since these existing approaches cause a computer system to
deviate from ideal operating conditions, they negatively
impact the experience of users interacting with the system
(e.g., performance becomes worse, resource usage increases,
power efficiency decreases, etc.).

SUMMARY

Techniques for mitigating timing attacks via dynamically
triggered time dilation are provided. According to one set of
embodiments, a computer system can track a count of API
calls or callbacks made by a program within each of a series
of time buckets. The computer system can further determine
that the count exceeds a threshold count for a predefined

15

30

40

45

60

2

consecutive number of time buckets. Upon making this
determination, the computer system can trigger time dilation
with respect to the program, where the time dilation causes
the program to observe a dilated view of time relative to real
time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified block diagram of a software
environment that implements the techniques of the present
disclosure.

FIG. 2 depicts a workflow for dynamically triggering time
dilation according to certain embodiments.

FIGS. 3A, 3B, and 3C depict graphs illustrating different
algorithms for warping an explicit clock according to certain
embodiments.

FIG. 4 depicts a workflow for dynamically scaling time
dilation according to certain embodiments.

FIG. 5 depicts a simplified block diagram of a computer
system according to certain embodiments.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and details are set forth in order to
provide an understanding of various embodiments. It will be
evident, however, to one skilled in the art that certain
embodiments can be practiced without some of these details,
or can be practiced with modifications or equivalents
thereof.

1. Overview

Embodiments of the present disclosure provide tech-
niques for mitigating timing attacks via “time dilation”—in
other words, dilating or warping the view of time of an
observer (e.g., a potential attacker) relative to real time such
that the observer cannot, or finds it very difficult to, establish
a consistent reference clock for carrying out a timing attack.

According to a first set of embodiments, a computer
system can track the number of API calls and/or callbacks
made by an observer within each of a series of time
windows, referred to as buckets. The API calls/callbacks
may be explicit clock APIs and/or APIs that can be used to
construct implicit clocks. If the system determines that the
observer has exceeded a threshold number of API calls/
callbacks for a predefined consecutive number of buckets,
the system can dynamic trigger (i.e., turn-on) time dilation
with respect to that observer. This can include, e.g., (1)
injecting a random amount of wait time (i.e., pausing) into
the implicit clock API calls/callbacks called by the observer,
thereby preventing the observer from constructing a consis-
tent implicit clock from those calls/callbacks, and/or (2)
randomly jittering/warping the time values returned by
explicit clock APIs to the observer, thereby preventing the
observer from using those explicit clock APIs establish a
consistent view of real time.

According to a second set of embodiments, the computer
system can dynamically scale the amount of time dilation
that is introduced via (1) and (2) for the observer based on
the observer’s continued behavior/activity. For example, if
the observer continues to act “badly” (e.g., issue a high
number of API calls/callbacks over an extended period of
time) which indicates that the observer is likely perpetrating
atiming attack or continuing to perpetrate such an attack, the
system may increase the amount of wait time injected into
implicit clock API calls/callbacks called by the observer

US 10,965,444 B2

3

and/or increase the amount of jitter/warping of time values
returned by explicit clock APIs to the observer. Conversely,
if the observer’s behavior improves (e.g., reduces its call/
callback activity to a normal level for an extended period of
time), the time dilation introduced via the wait time injection
and explicit clock jittering/warping may be dialed back or
even turned off entirely.

With the two high-level concepts described above (dy-
namic triggering and dynamic scaling of time dilation), the
observer can run under ideal conditions, with no significant
delay relative to real time, as long as the observer is
well-behaved. However, as soon as the observer begins to
exhibit behavior that is indicative of a timing attack, the
system can introduce time dilation safeguards that prevent
the observer from establishing a consistent reference clock
via either implicit clocks or explicit clocks. Further, as the
observer becomes more or less aggressive in its activity/
behavior, the system can dynamically increase or decrease
the degree of time dilation as appropriate. In this way, these
techniques can mitigate timing attacks in a manner that is
more intelligent, efficient, and performant than existing
solutions.

The foregoing and other aspects of the present disclosure
are described in further detail in the sections that follow. For
purposes of illustration, the embodiments and examples
below are presented in the context of a web platform
application (e.g., a web browser) that runs JavaScript code
downloaded by the application. In these examples/embodi-
ments, the JavaScript code is the observer/potential perpe-
trator of timing attacks and the web platform application is
the entity that implements the techniques of the present
disclosure. This is a valuable use case to consider, since
JavaScript and web content in general is typically the most
common vector by which unknown, potentially malicious
code can reach end-user systems. However, it should be
appreciated the present disclosure is not solely limited to this
context and can be applied to other contexts in which timing
attack mitigations are useful and appropriate. By way of
example, the techniques described herein are equally appli-
cable for mitigating timing attacks in system-level software.

2. Software Environment

FIG. 1 is a simplified block diagram of a software
environment 100 in which embodiments of the present
disclosure may be implemented. As shown, software envi-
ronment 100 includes a web platform application 102, which
may be a web browser or any other software application that
hosts/presents web content, and a JavaScript program 104
that is downloaded and run by application 102. Web plat-
form application 102 includes a set of web platform APIs
106 that can be invoked by JavaScript program 104.
Examples of such APIs include standard JavaScript APIs
(including callback functions such as setTimeout() setlnt-
erval() etc.), Document Object Model (DOM) APIs,
HTMLS5 APIs, browser-specific APIs, and so on.

Web platform application 102 also includes an event loop
108 that adheres to the HTMLS event loop standard and is
generally responsible for coordinating the execution of
different processes within web platform application 102,
including JavaScript program 104. In one set of embodi-
ments, event loop 108 can execute code each time a given
API 106 is invoked by JavaScript program 104 and thus can
act as a “chokepoint” for all such API invocations.

As alluded to in the Background section, the mitigation of
timing attacks is becoming an increasingly important issue
with the emergence of far-reaching security vulnerabilities

5

10

15

20

25

30

35

40

45

50

55

60

4

such as Meltdown and Spectre. JavaScript code, such as
JavaScript program 104 of FIG. 1, is perhaps one of the most
common vectors by which malicious code capable of per-
petrating a timing attack can find its way onto end-user
systems. For instance, JavaScript program 104 may be
surreptitiously injected into an online advertisement that is
then disseminated across a number of different websites via
an ad network. Accordingly, it is desirable to have mitiga-
tions at the web platform level that prevent or make it
difficult for JavaScript program 104 to carry out a timing
attack.

Unfortunately, existing approaches to timing attack miti-
gation suffer from various limitations and disadvantages that
make them less than ideal solutions for this use case. For
examples, approaches that simply clamp explicit clocks to a
coarse granularity or modify runtime frequencies introduce
performance and power management problems that nega-
tively affect the user experience of end-users interacting
with the web platform (e.g., animations begin to stutter, Ul
responsiveness degrades, web pages are slow to load, etc.).
These problems are particularly acute on mobile devices
which depend on efficient resource usage and power man-
agement for day-long operation.

To address the foregoing and other similar issues, web
platform application 102 of FIG. 1 is enhanced to include,
within event loop 108, a call rate tracking module 110, a
pause task module 112, and an explicit clock warp module
114. At a high level, modules 110-114 can interoperate to
implement two novel timing attack mitigation mechanisms
according to embodiments of the present disclosure: (1)
dynamically triggered time dilation and (2) dynamically
scaled time dilation.

With respect to mechanism (1) (described in further detail
in section (3) below), call rate tracking module 110 can track
the number of calls made by JavaScript program 104 to web
platform APIs 106 that enable program 104 to construct an
implicit clock (e.g., callback functions) and/or consult an
explicit clock (e.g., timestamp APIs). Note that this is
possible because event loop 108 acts as a chokepoint for all
of'the API invocations made by JavaScript program 104 and
other processes of web platform application 102. Call rate
tracking module 110 can perform this tracking on a per-
bucket basis, where each bucket is a time window of a
predefined period (e.g., 200 milliseconds), and can compare
the number of calls/callbacks made within each bucket to a
threshold. If call rate tracking module 110 determines that
the threshold has been exceeded for a certain number of
consecutive buckets, event loop 108 can trigger time dilation
for JavaScript program 104 by inserting wait time into each
implicit clock API call/callback via pause task module 112,
and/or warping the time values returned by explicit clock
APIs via explicit clock warp module 114. The end result of
this is that JavaScript program 104 begins to observe a
dilated view of time that is inconsistent with real time, and
thus makes it difficult or impossible for program 104 to
construct a consistent reference clock in order to perpetrate
a timing attack.

Significantly, since the wait time insertion and explicit
clock warping is only turned-on in scenarios where
JavaScript program 104 is deemed to be a potential attacker
(via the bucket-based call tracking above), this approach
does not introduce any performance or resource usage
overhead for web content that is well-behaved. This is a
significant advantage over existing mitigation techniques,
which tend to turn-on heavy-handed mitigations by default
and thus introduce performance/power problems for all web
pages, whether good or bad.

US 10,965,444 B2

5

With respect to mechanism (2) (described in further detail
in section (5) below), call rate tracking module 110 can
continue to track the number of calls/callbacks made by
JavaScript program 104 to web platform APIs 106 on a
per-bucket basis once time dilation is turned on (either via
the dynamic triggering mechanism of (1) or via a static
configuration). Based on this continued tracking, call rate
tracking module 110 can apply one or more policies to
determine whether JavaScript program 104 is becoming
more or less aggressive in its API calling behavior (indicat-
ing that the program is likely continuing to, or is no longer
or perhaps never was, attempting to perpetrate a timing
attack). This, in turn, can cause the system to scale up or
down the degree of time dilation for JavaScript program 104
(via pause task module 112 and explicit clock warp module
114) in a proportional way. For example, if JavaScript
program 104 continues to call implicit or explicit clock-
related APIs at a high frequency for an extended period of
time, the system can conclude that program 104 is continu-
ing to perpetrate a timing attack and can ramp up the amount
of wait time inserted into each implicit clock-related API
call/callback, and/or the amount of warping applied to
explicit clock time values. This ramping-up process can
continue as long as JavaScript program 104 persists in its
bad behavior, and may ultimately cause program 104 to be
terminated.

Conversely, if the API call/callback rate of JavaScript
program 104 drops to a low or normal level for an extended
period of time, event loop 108 can conclude that program
104 is now well-behaved and can begin ramping down the
amount of wait time inserted into each implicit clock-related
API call/callback, and/or the amount of warping applied to
explicit clock time values. This ramping-down process can
continue as long as JavaScript program 104 persists in its
good behavior, and may ultimately cause time dilation to be
turned off entirely for program 104.

Thus, with mechanism (2), web platform application 102
can more intelligently apply its timing attack mitigations in
a manner that is proportional and responsive to the real-time
activity/behavior of JavaScript program 104.

It should be appreciated that software environment 100 of
FIG. 1 is illustrative and not intended to limit embodiments
of the present disclosure. For example, while the various
entities shown in this figure are arranged according to a
particular configuration, other configurations are also pos-
sible. Further, these entities may include various subcom-
ponents and/or functions that are not specifically described.
One of ordinary skill in the art will recognize other varia-
tions, modifications, and alternatives.

3. Dynamically Triggering Time Dilation

FIG. 2 depicts a workflow 200 that provides additional
details regarding the processing that may be performed by
web platform application 102 and its constituent compo-
nents (e.g., call rate tracking module 110, pause task module
112, explicit clock warp module 114) for dynamically trig-
gering time dilation with respect to JavaScript program 104
according to certain embodiments.

At block 202, while JavaScript program 104 is running,
call rate tracking module 110 can start a timer for a current
bucket (i.e., time window). At block 204, call rate tracking
module 110 can receive and count the number of calls/
callbacks made by JavaScript program 104 to web platform
APIs 106 that either enable program 104 to construct an
implicit clock (i.e., a clock based on an arbitrary, internal
unit of time measure) or consult an explicit clock (i.e., a

10

15

20

25

30

35

40

45

50

55

60

65

6

clock that is based on hardware signals and represented as,
e.g., wall clock time or CPU time). Examples of the former
include JavaScript API calls or callbacks such as setTim-
eout() and setlnterval() Examples of the latter include any
API that returns a hardware-derived timestamp or time
value.

At block 206, call rate tracking module 110 can determine
that the timer started at block 202 has reached a predefined
time limit (e.g., 200 milliseconds) and close the current
bucket. In addition, module 110 can record the total number
of API calls/callbacks counted during that bucket (block
208) and check whether the total number exceeds a pre-
defined threshold (block 210). If so, call rate tracking
module 110 can mark the bucket as a “bad” bucket (block
212). Otherwise, call rate tracking module 110 can mark the
bucket as a “good” bucket (block 214).

Once call rate tracking module 110 has marked the bucket
appropriately, module 110 can check whether the last X
consecutive buckets were bad buckets, where X is some
predefined number (block 216). If not, call rate tracking
module 110 can return to block 202 in order to start a timer
for a new bucket and repeat the preceding steps.

However, if the last X consecutive buckets were in fact
bad buckets, it can be concluded that JavaScript program
104 is exhibiting bad behavior that is indicative of a timing
attack. As a result, web platform application 102 can trigger
(i.e., turn-on) time dilation with respect to JavaScript pro-
gram 104 by leveraging pause task module 112 and/or
explicit clock warp module 114 (block 218).

For example, according to one set of embodiments, for
each successive call that JavaScript program 104 makes to
an API function or callback that relates to implicit clock
creation, event loop 108 can (via, e.g., a task scheduler)
instruct pause task module 112 to insert a randomly gener-
ated amount of wait time into the API execution flow, before
the call/callback returns to program 104. The result of this is
that the API never completes in a consistent amount of time
from the perspective of JavaScript program 104, which
makes it difficult or impossible for program 104 to count
instances of these API calls/callbacks to construct an
implicit clock. In a particular embodiment, the amount of
wait time that pause task module 112 inserts into each API
call/callback can be a random value from O to 255 micro-
seconds.

According to another set of embodiments, for each suc-
cessive call that JavaScript program 104 makes to an API
function that relates to an explicit clock, event loop 108 can
(via, e.g., a task scheduler) instruct explicit clock warp
module 114 to randomly dilate or warp the time value that
is returned by the API to program 104. The result of this is
that JavaScript program 104 never receives a consistent
view of time from these explicit clock APIs, which makes it
difficult or impossible for program 104 to create a consistent
reference clock based on the explicit clocks. There are
different ways in which explicit clock warp module 114 can
warp the time values that are generated by the explicit clock
APIs, which include clamping/random jitter and applying
randomly-generated linear or higher-order functions that
transform real time to warped time. These various tech-
niques are discussed in section (4) below.

According to yet other embodiments, event loop 108 can
trigger any combination or subset of the time dilation
techniques described above according to various policies.
For example, if call rate tracking module 110 determines that
JavaScript program 104 has invoked a threshold number of
explicit clock APIs for X consecutive bad buckets (but not
a threshold number of APIs related to implicit clocks), event

US 10,965,444 B2

7

loop 108 may solely trigger explicit clock warping. As
another example, if call rate tracking module 110 determines
that JavaScript program 104 has invoked a threshold number
of APIs related to implicit clocks for X consecutive bad
buckets (but not a threshold number of explicit clock APIs),
event loop 108 may solely trigger wait time insertion. As yet
another example, a large number of API calls/callbacks for
implicit clocks may also trigger explicit clock warping, and
vice versa. All of these permutations, and more, are within
the scope of the present disclosure.

It should be appreciated that workflow 200 of FIG. 2 is
illustrative and various modifications are possible. For
example, although workflow 200 shows that a single
instance of call rate tracker module 110 can track the counts
of both explicit and implicit clock API calls/callbacks, in
some cases two separate instances of module 110 may be
used for these purposes respectively. Further, the various
steps shown in workflow 200 can be sequenced differently,
certain steps can be combined as needed, and certain steps
can be omitted as needed. One of ordinary skill in the art will
recognize other variations, modifications, and alternatives.

4. Warping Explicit Clocks

As mentioned above, at the time of determining that time
dilation should be turned on with respect to JavaScript
program 104, web platform application 102 can leverage
explicit clock warp module 114 in order to dilate or warp the
time values that are returned by explicit clocks APIs to
program 104, thereby preventing program 104 from observ-
ing a consistent view of time via explicit clocks. Generally
speaking, explicit clock warp module 114 can use any
algorithm to transform the time values returned by the
explicit clock APIs (referred to as real time) into the time
values observed by JavaScript program 104 (referred to as
observed time), as long as program 104’s observed view of
time is non-decreasing.

According to one set of embodiments, explicit clock warp
module 114 can perform this warping by clamping the time
values to a relatively coarse granularity, such as 5 or 20
microsecond intervals, and then randomly jittering the point
at which a particular time value is clamped (i.e., performing
the clamping at different random times within each clamping
period). These concepts are visualized in FIGS. 3A and 3B
according to an embodiment. In particular, FIG. 3A depicts
a graph 300 with real time on the x-axis and observed time
on the y-axis, where the y values (i.e., time observed by
JavaScript program 104) are clamped at regular 20 micro-
second intervals. FIG. 3B depicts a graph 310 where the y
values are clamped, but the point at which the clamping
occurs is randomly jittered. This results in clamping periods
of different random lengths.

According to another set of embodiments, explicit clock
warp module 114 can perform the warping by using a linear
transformation function such as y=ax+b where variables a
and b are chosen randomly, or a nonlinear transformation
function such as y=ax’+b where variables a, b, and t are
chosen randomly. An example nonlinear transformation
function is shown as graph 320 in FIG. 3C. One advantage
of using these transformation functions over the random
jitter technique is that the delay experienced by JavaScript
program 104 is less variable; in the case of the transforma-
tion functions, the maximum delay will be defined by the
function itself, whereas with random jittering the maximum
delay may be as high as twice the clamping interval (depend-
ing upon how the clamping turnover points are randomly
determined).

10

15

20

25

30

35

40

45

50

55

60

65

8

In various embodiments, the transformation function
described above can be made as complex as needed (by, e.g.,
adding more variables/dimensions) in order to make it
difficult for an attacker to reverse-engineer the function and
determine how time is being warped. In some embodiments,
multiple transformation functions may be spliced together
for further security.

5. Dynamically Scaling Time Dilation

FIG. 4 depicts a workflow 400 that provides additional
details regarding the processing that may be performed by
web platform application 102 and its constituent compo-
nents (e.g., call rate tracking module 110, pause task module
112, explicit clock warp module 114) for dynamically scal-
ing time dilation with respect to JavaScript program 104
according to certain embodiments. Workflow 400 assumes
that time dilation has already been turned on for JavaScript
program 104, either by virtue of the dynamic triggering
mechanism described in section (3) or via a static (e.g.,
default) configuration.

Blocks 402-414 of workflow 400 are substantially similar
to blocks 302-314 of workflow 300. In particular, at block
402, call rate tracking module 110 can start a timer for a
current bucket (i.e., time window). While this timer is
running, call rate tracking module 110 can receive and count
the number of calls/callbacks made by JavaScript program
104 to web platform APIs 106 that either enable program
104 to construct an implicit clock (i.e., a clock based on an
arbitrary, internal unit of time measure) or consult an explicit
clock (i.e., a clock that is based on hardware signals and
represented as, e.g., wall clock time or CPU time) (block
404).

At block 406, call rate tracking module 110 can determine
that the timer started at block 402 has reached a predefined
time limit (e.g., 200 milliseconds) and close the current
bucket. In addition, module 110 can record the total number
of API calls/callbacks counted during that bucket (block
408) and check whether that total number exceeds a pre-
defined threshold (block 410). If so, call rate tracking
module 110 can mark the bucket as a bad bucket (block 412).
Otherwise, call rate tracking module 110 can mark the
bucket as a good bucket (block 414).

Once call rate tracking module 110 has marked the bucket
appropriately, module 110 can check the number of bad
buckets have been encountered within some range of Y
recent buckets (block 416). Note that this condition is
different from that used in the triggering workflow (which
looks at consecutive bad buckets), since when scaling time
dilation it is generally more useful to look at patterns of
behavior over non-contiguous periods of time (to account
for scenarios where JavaScript program 104 may temporar-
ily halt or slow down its call rate activity in an attempt to
fool mitigation mechanisms).

If the number of bad buckets encountered within the last
Y buckets is between some low watermark A and some high
watermark B, it can be concluded that the call rate behavior
of JavaScript program 104 is about the same as before (i.e.,
has gotten neither better nor worse) and call rate tracking
module 110 can return to block 402 in order to start a timer
for a new bucket and repeat the preceding steps. Note that
in this case, pause task module 112 and explicit clock warp
module 114 will continue to insert wait time and warp
explicit clock values for JavaScript program 104 in accor-
dance with what they were doing before.

On the other hand, if the number of bad buckets encoun-
tered within the last Y buckets is greater than the high

US 10,965,444 B2

9

watermark B, it can be concluded that the call rate behavior/
activity of JavaScript program 104 is increasing/getting
worse. In this case, high watermark B can be incremented/
increased and web platform application 102 can scale up the
degree of time dilation applied to JavaScript program 104
(block 418). For example, if pause task module 112 was
previously inserting a randomly generated amount of wait
time into the API execution flow according to a certain range
(e.g., 0 to 255 microseconds), module 112 can increase the
top value of this range such that the maximum possible wait
time is increased. Further, if explicit clock warp module 114
was previously warping the time values returned by explicit
clock APIs to program 104 according to some clamping
interval and some amount of random jitter, module 114 can
increase the clamping interval and/or range of random jitter,
such that the time observed by JavaScript program 104 is
even further removed from real time. Call rate tracking
module 110 can then return to block 402 in order to start a
timer for a new bucket and repeat the preceding steps.

Finally, if the number of bad buckets encountered within
the last Y buckets is less than the low watermark A, it can
be concluded that the call rate behavior/activity of
JavaScript program 104 is decreasing/getting better. In this
case, low watermark A can be decremented/decreased and
web platform application 102 can scale down the degree of
time dilation applied to JavaScript program 104 (block 420).
For example, if pause task module 112 was previously
inserting a randomly generated amount of wait time into the
API execution flow according to a certain range, module 112
can decrease the top value of this range such that the
maximum possible wait time is decreased. Further, if
explicit clock warp module 114 was previously warping the
time values returned by explicit clock APIs to program 104
according to some clamping interval and some amount of
random jitter, module 114 can decrease the clamping inter-
val and/or range of random jitter, such that the time observed
by JavaScript program 104 is less removed from real time.
Call rate tracking module 110 can then return to block 402
in order to start a timer for a new bucket and repeat the
preceding steps.

Generally speaking, in various embodiments, web plat-
form application 102 can scale up or down the wait time
inserted by pause task module 112 and warping performed
by explicit clock warp module 114 either independently or
in a combined manner according to various policies. For
example, if call rate tracking module 110 detects a signifi-
cant change in call rate behavior with respect to explicit
clock APIs but not implicit clock APIs, application 102 may
solely scale explicit clock warping. Conversely, if call rate
tracking module 110 detects a significant change in call rate
behavior with respect to implicit clock APIs but not explicit
clock APIs, application 102 may solely scale wait time
insertion. As another example, a significant change in behav-
ior with respect to implicit clocks may also cause scaling of
explicit clock warping, and vice versa. All of these permu-
tations, and more, are within the scope of the present
disclosure.

Further, although not shown in FIG. 4, in some embodi-
ments web platform application 102 may take special mea-
sures if JavaScript program 104 behaves exceptionally well
or badly over an extended period of time. For instance, if
high watermark B reaches a maximum threshold (indicating
that the call rate activity/behavior of JavaScript program 104
has gotten progressively worse), application 102 may simply
terminate the process associated with the program rather
than continuing to scale the time dilation experienced by the
program any further. Similarly, if low watermark A reaches

10

15

20

25

30

35

40

45

50

55

60

65

10

a minimum threshold (indicating that the call rate activity/
behavior of JavaScript program 104 has gotten progressively
better), application 102 may completely turn off time dila-
tion for program 104. In this scenario, time dilation may be
triggered again per workflow 300 if JavaScript program 104
begins exhibiting bad behavior again in the future.

6. Leveraging Telemetry

In some embodiments, web platform application 102 can
include a telemetry component that enables it to communi-
cate information regarding the time dilation performed with
respect to JavaScript program 104 and other downloaded
JavaScript code to one or more remote servers. Examples of
such information include the web pages/URLs comprising
program 104, the measured call rate activity of program 104,
whether time dilation was triggered for program 104,
whether time dilation was scaled for program 104, the
particular parameters used for the time dilation triggering/
scaling, system performance parameters when time dilation
was turned on, and so on.

The servers can then aggregate this information across a
large population of applications/users and determine statis-
tics and trends which can be used for various purposes. For
example, in one set of embodiments, the servers can identify
a “whitelist” of web pages that are highly unlikely to contain
JavaScript code that is attempting to perpetrate a timing
attack, as well as a “blacklist” of web pages that are highly
likely to contain such malicious JavaScript code. The
whitelist and blacklist can then be communicated back to
web platform application 102 (and/or to other client appli-
cations such as anti-virus/anti-malware software), which can
uses these lists to, e.g., block user access to blacklisted sites,
turn off time dilation by default for whitelisted sites, and/or
implement more relaxed time dilation policies/parameters/
rules for whitelisted sites.

As another example, the statistics determined by the
remote servers can be used to inform and fine tune the time
dilation triggering and scaling algorithms described above,
such that they perform as expected and without unnecessary
or burdensome performance penalties. For instance, the
remote servers may determine that one particular algorithm
used to perform explicit clock warping results in excessive
stuttering on a few popular websites, which may instigate a
change to a different algorithm. Further, the remote servers
may determine that the scaling algorithm may cause a
particular non-malicious website to crash when loaded,
which may result in a modification to the scaling parameters
to avoid this incompatibility. One of ordinary skill in the art
will recognize other possible use cases for this collected
data.

7. Example Computer System

FIG. 5 is a simplified block diagram illustrating the
architecture of an example computer system 500 according
to certain embodiments. Computer system 500 (and/or
equivalent systems/devices) may be used to run any of the
software described in the foregoing disclosure, including
web platform application 102 of FIG. 1. As shown in FIG.
5, computer system 500 includes one or more processors 502
that communicate with a number of peripheral devices via a
bus subsystem 504. These peripheral devices include a
storage subsystem 506 (comprising a memory subsystem
508 and a file storage subsystem 510), user interface input
devices 512, user interface output devices 514, and a net-
work interface subsystem 516.

US 10,965,444 B2

11

Bus subsystem 504 can provide a mechanism for letting
the various components and subsystems of computer system
500 communicate with each other as intended. Although bus
subsystem 504 is shown schematically as a single bus,
alternative embodiments of the bus subsystem can utilize
multiple busses.

Network interface subsystem 516 can serve as an inter-
face for communicating data between computer system 500
and other computer systems or networks. Embodiments of
network interface subsystem 516 can include, e.g., an Eth-
ernet module, a Wi-Fi and/or cellular connectivity module,
and/or the like.

User interface input devices 512 can include a keyboard,
pointing devices (e.g., mouse, trackball, touchpad, etc.), a
touch-screen incorporated into a display, audio input devices
(e.g., voice recognition systems, microphones, etc.), motion-
based controllers, and other types of input devices. In
general, use of the term “input device” is intended to include
all possible types of devices and mechanisms for inputting
information into computer system 500.

User interface output devices 514 can include a display
subsystem and non-visual output devices such as audio
output devices, etc. The display subsystem can be, e.g., a
transparent or non-transparent display screen such as a
liquid crystal display (LCD) or organic light-emitting diode
(OLED) display that is capable of presenting 2D and/or 3D
imagery. In general, use of the term “output device” is
intended to include all possible types of devices and mecha-
nisms for outputting information from computer system 500.

Storage subsystem 506 includes a memory subsystem 508
and a file/disk storage subsystem 510. Subsystems 508 and
510 represent non-transitory computer-readable storage
media that can store program code and/or data that provide
the functionality of embodiments of the present disclosure.

Memory subsystem 508 includes a number of memories
including a main random access memory (RAM) 518 for
storage of instructions and data during program execution
and a read-only memory (ROM) 520 in which fixed instruc-
tions are stored. File storage subsystem 510 can provide
persistent (i.e., non-volatile) storage for program and data
files, and can include a magnetic or solid-state hard disk
drive, an optical drive along with associated removable
media (e.g., CD-ROM, DVD, Blu-Ray, etc.), a removable or
non-removable flash memory-based drive, and/or other
types of storage media known in the art.

It should be appreciated that computer system 500 is
illustrative and other configurations having more or fewer
components than computer system 500 are possible.

The above description illustrates various embodiments of
the present disclosure along with examples of how aspects
of these embodiments may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flex-
ibility and advantages of the present disclosure as defined by
the following claims. For example, although certain embodi-
ments have been described with respect to particular process
flows and steps, it should be apparent to those skilled in the
art that the scope of the present disclosure is not strictly
limited to the described flows and steps. Steps described as
sequential may be executed in parallel, order of steps may be
varied, and steps may be modified, combined, added, or
omitted. As another example, although certain embodiments
have been described using a particular combination of
hardware and software, it should be recognized that other
combinations of hardware and software are possible, and

40

45

55

65

12

that specific operations described as being implemented in
software can also be implemented in hardware and vice
versa.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense. Other
arrangements, embodiments, implementations and equiva-
lents will be evident to those skilled in the art and may be
employed without departing from the spirit and scope of the
present disclosure as set forth in the following claims.

What is claimed is:

1. A computer system comprising:

a computer hardware processor; and

a non-transitory computer readable storage medium hav-

ing stored thereon program code that, when executed

by the computer hardware processor, causes the com-

puter hardware processor to:

track a count of application programming interface
(API) calls or callbacks made by a program within
each of a series of time buckets;

determine that the count exceeds a threshold count for
a predefined consecutive number of time buckets;
and

upon determining that the count exceeds the threshold
count for the predefined consecutive number of time
buckets, trigger time dilation with respect to the
program, wherein the time dilation causes the pro-
gram to observe a dilated view of time relative to real
time by modifying, for at least one API call or
callback made by the program, an execution time or
a return time value of the API call or callback.

2. The computer system of claim 1 wherein the count of
API calls or callbacks include one or more calls or callbacks
to APIs usable by the program for constructing an implicit
clock.

3. The computer system of claim 2 wherein triggering
time dilation with respect to the program comprises:

for each successive call or callback made by the program

to an API usable for constructing an implicit clock,
inserting a random amount of wait time into the call or
callback of the APIL.

4. The computer system of claim 1 wherein the count of
API calls or callbacks include one or more calls to explicit
clock APIs configured to return time values derived from
one or more hardware signals of the computer system.

5. The computer system of claim 4 wherein triggering
time dilation with respect to the program comprises:

for each successive call made by the program to an

explicit clock API, warping the time value returned by
the explicit clock API before passing the time value to
the program.

6. The computer system of claim 5 wherein warping the
time value returned by the explicit clock API comprises:

transforming the time value using a randomly determined

linear or non-linear transformation function.

7. The computer system of claim 1 wherein the program
code further causes the computer hardware processor to:

transmit, to one or more remote servers, information

pertaining to the program and the triggering of the time
dilation with respect to the program, the information
being useable by the one or more remote servers for
tuning how the time dilation is implemented.

8. A method for mitigating timing attacks via dynamically
triggered time dilation, the method comprising:

tracking, by a computer system, a count of application

programming interface (API) calls or callbacks made
by a program within each of a series of time buckets;

US 10,965,444 B2

13

determining, by the computer system, that the count
exceeds a threshold count for a predefined consecutive
number of time buckets; and

upon determining that the count exceeds the threshold

count for the predefined consecutive number of time
buckets, triggering, by the computer system, time dila-
tion with respect to the program, wherein the time
dilation causes the program to observe a dilated view of
time relative to real time by modifying, for at least one
API call or callback made by the program, an execution
time or a return time value of the API call or callback.

9. The method of claim 8 wherein the count of API calls
or callbacks include one or more calls or callbacks to APIs
usable by the program for constructing an implicit clock.

10. The method of claim 9 wherein triggering time
dilation with respect to the program comprises:

for each successive call or callback made by the program

to an API usable for constructing an implicit clock,
inserting a random amount of wait time into the call or
callback of the APL

11. The method of claim 8 wherein the count of API calls
or callbacks include one or more calls to explicit clock APIs
configured to return time values derived from one or more
hardware signals of the computer system.

12. The method of claim 11 wherein triggering time
dilation with respect to the program comprises:

for each successive call made by the program to an

explicit clock API, warping the time value returned by
the explicit clock API before passing the time value to
the program.

13. The method of claim 12 wherein warping the time
value returned by the explicit clock API comprises:

transforming the time value using a randomly determined

linear or non-linear transformation function.

14. The method of claim 8 wherein the method further
comprises:

transmitting, to one or more remote servers, information

pertaining to the program and the triggering of the time
dilation with respect to the program, the information
being useable by the one or more remote servers for
tuning how the time dilation is implemented.

15. A non-transitory computer readable storage medium
having stored thereon program code executable by a com-
puter system, the program code causing the computer sys-
tem to:

5

20

25

30

40

14

track a count of application programming interface (API)
calls or callbacks made by a program within each of a
series of time buckets;
determine that the count exceeds a threshold count for a
predefined consecutive number of time buckets; and

upon determining that the count exceeds the threshold
count for the predefined consecutive number of time
buckets, trigger time dilation with respect to the pro-
gram, wherein the time dilation causes the program to
observe a dilated view of time relative to real time by
modifying, for at least one API call or callback made by
the program, an execution time or a return time value
of the API call or callback.

16. The non-transitory computer readable storage medium
of claim 15 wherein the count of API calls or callbacks
include one or more calls or callbacks to APIs usable by the
program for constructing an implicit clock.

17. The non-transitory computer readable storage medium
of claim 16 wherein triggering time dilation with respect to
the program comprises:

for each successive call or callback made by the program

to an API usable for constructing an implicit clock,
inserting a random amount of wait time into the call or
callback of the APIL.

18. The non-transitory computer readable storage medium
of claim 15 wherein the count of API calls or callbacks
include one or more calls to explicit clock APIs configured
to return time values derived from one or more hardware
signals of the computer system.

19. The non-transitory computer readable storage medium
18 wherein triggering time dilation with respect to the
program comprises:

for each successive call made by the program to an

explicit clock API, warping the time value returned by
the explicit clock API before passing the time value to
the program.

20. The non-transitory computer readable storage medium
of claim 15 wherein the program code further causes the
computer system to:

transmit, to one or more remote servers, information

pertaining to the program and the triggering of the time
dilation with respect to the program, the information
being useable by the one or more remote servers for
tuning how the time dilation is implemented.

#* #* #* #* #*

