
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Processed by Luminess, 75001 PARIS (FR)

(19)
EP

3
78

5
15

7
B

1
EP003785157B1

(11) EP 3 785 157 B1
(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
29.05.2024 Bulletin 2024/22

(21) Application number: 19719705.6

(22) Date of filing: 06.04.2019

(51) International Patent Classification (IPC):
G06F 21/55 (2013.01)

(52) Cooperative Patent Classification (CPC):
G06F 21/554; G06F 2221/2135

(86) International application number:
PCT/US2019/026213

(87) International publication number:
WO 2019/209500 (31.10.2019 Gazette 2019/44)

(54) MITIGATING TIMING ATTACKS VIA DYNAMICALLY SCALED TIME DILATION

VERRINGERUNG VON TIMING-ANGRIFFEN DURCH DYNAMISCH SKALIERTE ZEITDILATATION

ATTÉNUATION D’ATTAQUES DE SYNCHRONISATION PAR DILATATION TEMPORELLE À
ÉCHELLE DYNAMIQUE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 24.04.2018 US 201815961849

(43) Date of publication of application:
03.03.2021 Bulletin 2021/09

(73) Proprietor: Microsoft Technology Licensing, LLC
Redmond, WA 98052-6399 (US)

(72) Inventors:
• WEBER, Jason

Redmond, Washington 98052-6399 (US)
• TITUS, Tobin

Redmond, Washington 98052-6399 (US)
• LIBBY, Daniel

Redmond, Washington 98052-6399 (US)
• MANTHOS, Brian

Redmond, Washington 98052-6399 (US)
• PACITTI, Colin

Redmond, Washington 98052-6399 (US)
• ZHAO, Pengxiang

Redmond, Washington 98052-6399 (US)
• MILLER, Matthew

Redmond, Washington 98052-6399 (US)
• RABET, Jordan Thomas

Redmond, Washington 98052-6399 (US)

• HAZEN, John
Redmond, Washington 98052-6399 (US)

(74) Representative: CMS Cameron McKenna Nabarro
Olswang LLP
Cannon Place
78 Cannon Street
London EC4N 6AF (GB)

(56) References cited:
WO-A2-2013/172913 WO-A2-2013/172913
US-A1- 2014 380 474 US-A1- 2014 380 474

• ASLAN ASKAROV ET AL: "Predictive black-box
mitigation of timing channels", PROCEEDINGS
OF THE 17TH ACM CONFERENCE ON
COMPUTER AND COMMUNICATIONS
SECURITY, ACM, 2 PENN PLAZA, SUITE 701 NEW
YORK NY 10121-0701 USA, 4 October 2010
(2010-10-04), pages 297-307, XP058270201, DOI:
10.1145/1866307.1866341 ISBN:
978-1-4503-0245-6

• ASLAN ASKAROV ET AL: "Predictive black-box
mitigation of timing channels", PROCEEDINGS
OF THE 17TH ACM CONFERENCE ON
COMPUTER AND COMMUNICATIONS
SECURITY, ACM, 2 PENN PLAZA, SUITE 701 NEW
YORK NY 10121-0701 USA, 4 October 2010
(2010-10-04), pages 297-307, XP058270201, DOI:
10.1145/1866307.1866341 ISBN:
978-1-4503-0245-6

EP 3 785 157 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] In computing, a timing attack is a type of side-
channel attack (i.e., an attack based on information
gained from the physical implementation of a computer
system) in which an attacker attempts to compromise the
system by analyzing the amount of time it takes to com-
plete one or more operations. Every logical operation in
a computer system takes some time to execute, and that
time can differ based on the input(s) to the operation.
Accordingly, with sufficiently precise measurements of
an operation’s execution time, an attacker can create a
time model for the operation and deduce its input(s)
(which may include a secret). Recent highly publicized
security vulnerabilities that rely on timing attacks include
the Meltdown and Spectre vulnerabilities which affect
most modern microprocessor architectures.
[0002] Generally speaking, to carry out a timing attack,
an attacker needs to be able to quantify an operation’s
execution time via a reference clock-in other words, a
clock in which clock ticks arrive at a consistent rate. The
attacker may establish the reference clock by consulting
an explicit clock (i.e., one that is derived from hardware
signals and typically represented in either wall clock time
or CPU time). For example, the attacker may call an ap-
plication programming interface (API) that returns times-
tamp values as determined by the system hardware. The
attacker may also establish the reference clock by cre-
ating an implicit clock (i.e., one that is derived from an
arbitrary unit of time measure, without need for an explicit
clock). For example, the attacker may track the number
of times it can take some action or carry out some task
(e.g., call an API, run a calculation, etc.) while an oper-
ation executes and use that number to quantify the du-
ration of the operation.
[0003] There are a number of existing approaches for
mitigating timing attacks, such as clamping explicit clocks
to a relatively low resolution, altering runtime hardware
frequencies, and adding noise or interference to such
frequencies. However, these existing approaches can be
worked around and thus fail to structurally prevent timing
exploits. Additionally, since these existing approaches
cause a computer system to deviate from ideal operating
conditions, they negatively impact the experience of us-
ers interacting with the system (e.g., performance be-
comes worse, resource usage increases, power efficien-
cy decreases, etc.).
WO 2013/172913 A2 describes devices, systems, appa-
ratus, methods, products, and other implementations, for
identifying a process to obtain timing information of a
processor-based device, and in response to identifying
the process to obtain the timing information, delaying de-
livery of the timing information for a time-delay period. In
some embodiments, identifying the process to obtain the
timing information may include identifying a request to
obtain the timing information of the processor-based de-

vice. In some embodiments, identifying the process to
obtain the timing information may include identifying a
memory-access process.
US 2014/380474 A1 describes a system comprises one
or more counters; comparison logic; and one or more
hardware processors communicatively coupled to the
one or more counters and the comparison logic. The one
or more hardware processors are configured to instanti-
ate one or more virtual machines that are adapted to
analyze received content, where the one or more virtual
machines are configured to monitor a delay caused by
one or more events conducted during processing of the
content and identify the content as including malware if
the delay exceed a first time period.
ASLAN ASKAROV ET AL, "Predictive black-box mitiga-
tion of timing channels", PROCEEDINGS OF THE 17TH
ACM CONFERENCE ON COMPUTER AND COMMU-
NICATIONS SECURITY, ACM, 2 PENN PLAZA, SUITE
701 NEW YORK NY 10121-0701 USA, 4 October 2010
describes techniques for general black-box mitigation of
timing channels. The source of events is wrapped by a
timing mitigator that delays output events so that they
contain only a bounded amount of information. We intro-
duce a general class of timing mitigators that can achieve
any given bound on timing channel leakage, with a trade-
off in system performance. We show these mitigators
compose well with other mechanisms for information flow
control, and demonstrate they are effective against some
known timing attacks.

SUMMARY

[0004] The invention is set out in the appended set of
claims.
[0005] Techniques for mitigating timing attacks via dy-
namically scaled time dilation are provided. According to
one set of embodiments, a computer system can enable
time dilation with respect to a program, where the time
dilation causes the program to observe a dilated view of
time relative to real time. Then, while the time dilation is
enabled, the computer system can track a count of API
calls or callbacks made by a program within each of a
series of time buckets and, based on counts tracked for
a range of recent time buckets, scale up or scale down
a degree of the time dilation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006]

FIG. 1 depicts a simplified block diagram of a soft-
ware environment that implements the techniques
of the present disclosure.
FIG. 2 depicts a workflow for dynamically triggering
time dilation according to certain embodiments.
FIGS. 3A, 3B, and 3C depict graphs illustrating dif-
ferent algorithms for warping an explicit clock ac-
cording to certain embodiments.

1 2

EP 3 785 157 B1

3

5

10

15

20

25

30

35

40

45

50

55

FIG. 4 depicts a workflow for dynamically scaling
time dilation according to certain embodiments.
FIG. 5 depicts a simplified block diagram of a com-
puter system according to certain embodiments.

DETAILED DESCRIPTION

[0007] In the following description, for purposes of ex-
planation, numerous examples and details are set forth
in order to provide an understanding of various embod-
iments. It will be evident, however, to one skilled in the
art that certain embodiments can be practiced without
some of these details, or can be practiced with modifica-
tions or equivalents thereof.

1. Overview

[0008] Embodiments of the present disclosure provide
techniques for mitigating timing attacks via "time dila-
tion"-in other words, dilating or warping the view of time
of an observer (e.g., a potential attacker) relative to real
time such that the observer cannot establish a consistent
reference clock for carrying out a timing attack.
[0009] According to a first set of embodiments, a com-
puter system can track the number of API calls and/or
callbacks made by an observer within each of a series
of time windows, referred to as buckets. The API
calls/callbacks may be explicit clock APIs and/or APIs
that can be used to construct implicit clocks. If the system
determines that the observer has exceeded a threshold
number of API calls/callbacks for a predefined consecu-
tive number of buckets, the system can dynamic trigger
(i.e., turn-on) time dilation with respect to that observer.
This can include, e.g., (1) injecting a random amount of
wait time (i.e., pausing) into the implicit clock API
calls/callbacks called by the observer, thereby prevent-
ing the observer from constructing a consistent implicit
clock from those calls/callbacks, and/or (2) randomly jit-
tering/warping the time values returned by explicit clock
APIs to the observer, thereby preventing the observer
from using those explicit clock APIs establish a consistent
view of real time.
[0010] According to a second set of embodiments, the
computer system can dynamically scale the amount of
time dilation that is introduced via (1) and (2) for the ob-
server based on the observer’s continued behavior/ac-
tivity. For example, if the observer continues to act "badly"
(e.g., issue a high number of API calls/callbacks over an
extended period of time) which indicates that the observ-
er is likely perpetrating a timing attack or continuing to
perpetrate such an attack, the system may increase the
amount of wait time injected into implicit clock API
calls/callbacks called by the observer and/or increase
the amount of jitter/warping of time values returned by
explicit clock APIs to the observer. Conversely, if the ob-
server’s behavior improves (e.g., reduces its call/call-
back activity to a normal level for an extended period of
time), the time dilation introduced via the wait time injec-

tion and explicit clock jittering/warping may be dialed
back or even turned off entirely.
[0011] With the two high-level concepts described
above (dynamic triggering and dynamic scaling of time
dilation), the observer can run under ideal conditions,
with no significant delay relative to real time, as long as
the observer is well-behaved. However, as soon as the
observer begins to exhibit behavior that is indicative of a
timing attack, the system can introduce time dilation safe-
guards that prevent the observer from establishing a con-
sistent reference clock via either implicit clocks or explicit
clocks. Further, as the observer becomes more or less
aggressive in its activity/behavior, the system can dy-
namically increase or decrease the degree of time dila-
tion as appropriate. In this way, these techniques can
mitigate timing attacks in a manner that is more intelli-
gent, efficient, and performant than existing solutions.
[0012] The foregoing and other aspects of the present
disclosure are described in further detail in the sections
that follow. For purposes of illustration, the embodiments
and examples below are presented in the context of a
web platform application (e.g., a web browser) that runs
JavaScript code downloaded by the application. In these
examples/embodiments, the JavaScript code is the ob-
server/potential perpetrator of timing attacks and the web
platform application is the entity that implements the tech-
niques of the present disclosure. This is a valuable use
case to consider, since JavaScript and web content in
general is typically the most common vector by which
unknown, potentially malicious code can reach end-user
systems. However, it should be appreciated the present
disclosure is not solely limited to this context and can be
applied to other contexts in which timing attack mitiga-
tions are useful and appropriate. By way of example, the
techniques described herein are equally applicable for
mitigating timing attacks in systemlevel software.

2. Software Environment

[0013] FIG. 1 is a simplified block diagram of a software
environment 100 in which embodiments of the present
disclosure may be implemented. As shown, software en-
vironment 100 includes a web platform application 102,
which may be a web browser or any other software ap-
plication that hosts/presents web content, and a JavaS-
cript program 104 that is downloaded and run by appli-
cation 102. Web platform application 102 includes a set
of web platform APIs 106 that can be invoked by Java-
Script program 104. Examples of such APIs include
standard JavaScript APIs (including callback functions
such as setTimeout(), setInterval(), etc.), Document Ob-
ject Model (DOM) APIs, HTML5 APIs, browser-specific
APIs, and so on.
[0014] Web platform application 102 also includes an
event loop 108 that adheres to the HTML5 event loop
standard and is generally responsible for coordinating
the execution of different processes within web platform
application 102, including JavaScript program 104. In

3 4

EP 3 785 157 B1

4

5

10

15

20

25

30

35

40

45

50

55

one set of embodiments, event loop 108 can execute
code each time a given API 106 is invoked by JavaScript
program 104 and thus can act as a "chokepoint" for all
such API invocations.
[0015] As alluded to in the Background section, the
mitigation of timing attacks is becoming an increasingly
important issue with the emergence of far-reaching se-
curity vulnerabilities such as Meltdown and Spectre.
JavaScript code, such as JavaScript program 104 of FIG.
1, is perhaps one of the most common vectors by which
malicious code capable of perpetrating a timing attack
can find its way onto end-user systems. For instance,
JavaScript program 104 may be surreptitiously injected
into an online advertisement that is then disseminated
across a number of different websites via an ad network.
Accordingly, it is desirable to have mitigations at the web
platform level that prevent or make it difficult for JavaS-
cript program 104 to carry out a timing attack.
[0016] Unfortunately, existing approaches to timing at-
tack mitigation suffer from various limitations and disad-
vantages that make them less than ideal solutions for
this use case. For examples, approaches that simply
clamp explicit clocks to a coarse granularity or modify
runtime frequencies introduce performance and power
management problems that negatively affect the user ex-
perience of end-users interacting with the web platform
(e.g., animations begin to stutter, UI responsiveness de-
grades, web pages are slow to load, etc.). These prob-
lems are particularly acute on mobile devices which de-
pend on efficient resource usage and power manage-
ment for day-long operation.
[0017] To address the foregoing and other similar is-
sues, web platform application 102 of FIG. 1 is enhanced
to include, within event loop 108, a call rate tracking mod-
ule 110, a pause task module 112, and an explicit clock
warp module 114. At a high level, modules 110-114 can
interoperate to implement two novel timing attack miti-
gation mechanisms according to embodiments of the
present disclosure: (1) dynamically triggered time dilation
and (2) dynamically scaled time dilation.
[0018] With respect to mechanism (1) (described in fur-
ther detail in section (3) below), call rate tracking module
110 can track the number of calls made by JavaScript
program 104 to web platform APIs 106 that enable pro-
gram 104 to construct an implicit clock (e.g., callback
functions) and/or consult an explicit clock (e.g., times-
tamp APIs). Note that this is possible because event loop
108 acts as a chokepoint for all of the API invocations
made by JavaScript program 104 and other processes
of web platform application 102. Call rate tracking module
110 can perform this tracking on a per-bucket basis,
where each bucket is a time window of a predefined pe-
riod (e.g., 200 milliseconds), and can compare the
number of calls/callbacks made within each bucket to a
threshold. If call rate tracking module 110 determines
that the threshold has been exceeded for a certain
number of consecutive buckets, event loop 108 can trig-
ger time dilation for JavaScript program 104 by inserting

wait time into each implicit clock API call/callback via
pause task module 112, and/or warping the time values
returned by explicit clock APIs via explicit clock warp
module 114. The end result of this is that JavaScript pro-
gram 104 begins to observe a dilated view of time that
is inconsistent with real time, and thus makes it difficult
or impossible for program 104 to construct a consistent
reference clock in order to perpetrate a timing attack.
[0019] Significantly, since the wait time insertion and
explicit clock warping is only turned-on in scenarios
where JavaScript program 104 is deemed to be a poten-
tial attacker (via the bucket-based call tracking above),
this approach does not introduce any performance or re-
source usage overhead for web content that is well-be-
haved. This is a significant advantage over existing mit-
igation techniques, which tend to turn-on heavyhanded
mitigations by default and thus introduce perform-
ance/power problems for all web pages, whether good
or bad.
[0020] With respect to mechanism (2) (described in fur-
ther detail in section (5) below), call rate tracking module
110 can continue to track the number of calls/callbacks
made by JavaScript program 104 to web platform APIs
106 on a per-bucket basis once time dilation is turned on
(either via the dynamic triggering mechanism of (1) or
via a static configuration). Based on this continued track-
ing, call rate tracking module 110 can apply one or more
policies to determine whether JavaScript program 104 is
becoming more or less aggressive in its API calling be-
havior (indicating that the program is likely continuing to,
or is no longer or perhaps never was, attempting to per-
petrate a timing attack). This, in turn, can cause the sys-
tem to scale up or down the degree of time dilation for
JavaScript program 104 (via pause task module 112 and
explicit clock warp module 114) in a proportional way.
For example, if JavaScript program 104 continues to call
implicit or explicit clock-related APIs at a high frequency
for an extended period of time, the system can conclude
that program 104 is continuing to perpetrate a timing at-
tack and can ramp up the amount of wait time inserted
into each implicit clock-related API call/callback, and/or
the amount of warping applied to explicit clock time val-
ues. This ramping-up process can continue as long as
JavaScript program 104 persists in its bad behavior, and
may ultimately cause program 104 to be terminated.
[0021] Conversely, if the API call/callback rate of Java-
Script program 104 drops to a low or normal level for an
extended period of time, event loop 108 can conclude
that program 104 is now well-behaved and can begin
ramping down the amount of wait time inserted into each
implicit clock-related API call/callback, and/or the amount
of warping applied to explicit clock time values. This ram-
ping-down process can continue as long as JavaScript
program 104 persists in its good behavior, and may ulti-
mately cause time dilation to be turned off entirely for
program 104.
[0022] Thus, with mechanism (2), web platform appli-
cation 102 can more intelligently apply its timing attack

5 6

EP 3 785 157 B1

5

5

10

15

20

25

30

35

40

45

50

55

mitigations in a manner that is proportional and respon-
sive to the real-time activity/behavior of JavaScript pro-
gram 104.
[0023] It should be appreciated that software environ-
ment 100 of FIG. 1 is illustrative and not intended to limit
embodiments of the present disclosure. For example,
while the various entities shown in this figure are ar-
ranged according to a particular configuration, other con-
figurations are also possible. Further, these entities may
include various subcomponents and/or functions that are
not specifically described. One of ordinary skill in the art
will recognize other variations, modifications, and alter-
natives.

3. Dynamically Triggering Time Dilation

[0024] FIG. 2 depicts a workflow 200 that provides ad-
ditional details regarding the processing that may be per-
formed by web platform application 102 and its constit-
uent components (e.g., call rate tracking module 110,
pause task module 112, explicit clock warp module 114)
for dynamically triggering time dilation with respect to
JavaScript program 104 according to certain embodi-
ments.
[0025] At block 202, while JavaScript program 104 is
running, call rate tracking module 110 can start a timer
for a current bucket (i.e., time window). At block 204, call
rate tracking module 110 can receive and count the
number of calls/callbacks made by JavaScript program
104 to web platform APIs 106 that either enable program
104 to construct an implicit clock (i.e., a clock based on
an arbitrary, internal unit of time measure) or consult an
explicit clock (i.e., a clock that is based on hardware sig-
nals and represented as, e.g., wall clock time or CPU
time). Examples of the former include JavaScript API
calls or callbacks such as setTimeout() and setIntervalU.
Examples of the latter include any API that returns a hard-
ware-derived timestamp or time value.
[0026] At block 206, call rate tracking module 110 can
determine that the timer started at block 202 has reached
a predefined time limit (e.g., 200 milliseconds) and close
the current bucket. In addition, module 110 can record
the total number of API calls/callbacks counted during
that bucket (block 208) and check whether the total
number exceeds a predefined threshold (block 210). If
so, call rate tracking module 110 can mark the bucket as
a "bad" bucket (block 212). Otherwise, call rate tracking
module 110 can mark the bucket as a "good" bucket
(block 214).
[0027] Once call rate tracking module 110 has marked
the bucket appropriately, module 110 can check whether
the last X consecutive buckets were bad buckets, where
X is some predefined number (block 216). If not, call rate
tracking module 110 can return to block 202 in order to
start a timer for a new bucket and repeat the preceding
steps.
[0028] However, if the last X consecutive buckets were
in fact bad buckets, it can be concluded that JavaScript

program 104 is exhibiting bad behavior that is indicative
of a timing attack. As a result, web platform application
102 can trigger (i.e., turn-on) time dilation with respect
to JavaScript program 104 by leveraging pause task
module 112 and/or explicit clock warp module 114 (block
218).
[0029] For example, according to one set of embodi-
ments, for each successive call that JavaScript program
104 makes to an API function or callback that relates to
implicit clock creation, event loop 108 can (via, e.g., a
task scheduler) instruct pause task module 112 to insert
a randomly generated amount of wait time into the API
execution flow, before the call/callback returns to pro-
gram 104. The result of this is that the API never com-
pletes in a consistent amount of time from the perspective
of JavaScript program 104, which makes it difficult or
impossible for program 104 to count instances of these
API calls/callbacks to construct an implicit clock. In a par-
ticular embodiment, the amount of wait time that pause
task module 112 inserts into each API call/callback can
be a random value from 0 to 255 microseconds.
[0030] According to another set of embodiments, for
each successive call that JavaScript program 104 makes
to an API function that relates to an explicit clock, event
loop 108 can (via, e.g., a task scheduler) instruct explicit
clock warp module 114 to randomly dilate or warp the
time value that is returned by the API to program 104.
The result of this is that JavaScript program 104 never
receives a consistent view of time from these explicit
clock APIs, which makes it difficult or impossible for pro-
gram 104 to create a consistent reference clock based
on the explicit clocks. There are different ways in which
explicit clock warp module 114 can warp the time values
that are generated by the explicit clock APIs, which in-
clude clamping/random jitter and applying randomly-
generated linear or higher-order functions that transform
real time to warped time. These various techniques are
discussed in section (4) below.
[0031] According to yet other embodiments, event loop
108 can trigger any combination or subset of the time
dilation techniques described above according to various
policies. For example, if call rate tracking module 110
determines that JavaScript program 104 has invoked a
threshold number of explicit clock APIs for X consecutive
bad buckets (but not a threshold number of APIs related
to implicit clocks), event loop 108 may solely trigger ex-
plicit clock warping. As another example, if call rate track-
ing module 110 determines that JavaScript program 104
has invoked a threshold number of APIs related to implicit
clocks for X consecutive bad buckets (but not a threshold
number of explicit clock APIs), event loop 108 may solely
trigger wait time insertion. As yet another example, a
large number of API calls/callbacks for implicit clocks
may also trigger explicit clock warping, and vice versa.
All of these permutations, and more, are within the scope
of the present disclosure.
[0032] It should be appreciated that workflow 200 of
FIG. 2 is illustrative and various modifications are possi-

7 8

EP 3 785 157 B1

6

5

10

15

20

25

30

35

40

45

50

55

ble. For example, although workflow 200 shows that a
single instance of call rate tracker module 110 can track
the counts of both explicit and implicit clock API calls/call-
backs, in some cases two separate instances of module
110 may be used for these purposes respectively. Fur-
ther, the various steps shown in workflow 200 can be
sequenced differently, certain steps can be combined as
needed, and certain steps can be omitted as needed.
One of ordinary skill in the art will recognize other varia-
tions, modifications, and alternatives.

4. Warping Explicit Clocks

[0033] As mentioned above, at the time of determining
that time dilation should be turned on with respect to
JavaScript program 104, web platform application 102
can leverage explicit clock warp module 114 in order to
dilate or warp the time values that are returned by explicit
clocks APIs to program 104, thereby preventing program
104 from observing a consistent view of time via explicit
clocks. Generally speaking, explicit clock warp module
114 can use any algorithm to transform the time values
returned by the explicit clock APIs (referred to as real
time) into the time values observed by JavaScript pro-
gram 104 (referred to as observed time), as long as pro-
gram 104’s observed view of time is non-decreasing.
[0034] According to one set of embodiments, explicit
clock warp module 114 can perform this warping by
clamping the time values to a relatively coarse granular-
ity, such as 5 or 20 microsecond intervals, and then ran-
domly jittering the point at which a particular time value
is clamped (i.e., performing the clamping at different ran-
dom times within each clamping period). These concepts
are visualized in FIGS. 3A and 3B according to an em-
bodiment. In particular, FIG. 3A depicts a graph 300 with
real time on the x-axis and observed time on the y-axis,
where the y values (i.e., time observed by JavaScript
program 104) are clamped at regular 20 microsecond
intervals. FIG. 3B depicts a graph 310 where the y values
are clamped, but the point at which the clamping occurs
is randomly jittered. This results in clamping periods of
different random lengths.
[0035] According to another set of embodiments, ex-
plicit clock warp module 114 can perform the warping by
using a linear transformation function such as y = ax + b
where variables a and b are chosen randomly, or a non-
linear transformation function such as y = axt + b where
variables a, b, and t are chosen randomly. An example
nonlinear transformation function is shown as graph 320
in FIG. 3C. One advantage of using these transformation
functions over the random jitter technique is that the delay
experienced by JavaScript program 104 is less variable;
in the case of the transformation functions, the maximum
delay will be defined by the function itself, whereas with
random jittering the maximum delay may be as high as
twice the clamping interval (depending upon how the
clamping turnover points are randomly determined).
[0036] In various embodiments, the transformation

function described above can be made as complex as
needed (by, e.g., adding more variables/dimensions) in
order to make it difficult for an attacker to reverse-engi-
neer the function and determine how time is being
warped. In some embodiments, multiple transformation
functions may be spliced together for further security.

5. Dynamically Scaling Time Dilation

[0037] FIG. 4 depicts a workflow 400 that provides ad-
ditional details regarding the processing that may be per-
formed by web platform application 102 and its constit-
uent components (e.g., call rate tracking module 110,
pause task module 112, explicit clock warp module 114)
for dynamically scaling time dilation with respect to Java-
Script program 104 according to certain embodiments.
Workflow 400 assumes that time dilation has already
been turned on for JavaScript program 104, either by
virtue of the dynamic triggering mechanism described in
section (3) or via a static (e.g., default) configuration.
[0038] Blocks 402-414 of workflow 400 are substan-
tially similar to blocks 302-314 of workflow 300. In par-
ticular, at block 402, call rate tracking module 110 can
start a timer for a current bucket (i.e., time window). While
this timer is running, call rate tracking module 110 can
receive and count the number of calls/callbacks made
by JavaScript program 104 to web platform APIs 106 that
either enable program 104 to construct an implicit clock
(i.e., a clock based on an arbitrary, internal unit of time
measure) or consult an explicit clock (i.e., a clock that is
based on hardware signals and represented as, e.g., wall
clock time or CPU time) (block 404).
[0039] At block 406, call rate tracking module 110 can
determine that the timer started at block 402 has reached
a predefined time limit (e.g., 200 milliseconds) and close
the current bucket. In addition, module 110 can record
the total number of API calls/callbacks counted during
that bucket (block 408) and check whether that total
number exceeds a predefined threshold (block 410). If
so, call rate tracking module 110 can mark the bucket as
a bad bucket (block 412). Otherwise, call rate tracking
module 110 can mark the bucket as a good bucket (block
414).
[0040] Once call rate tracking module 110 has marked
the bucket appropriately, module 110 can check the
number of bad buckets have been encountered within
some range of Y recent buckets (block 416). Note that
this condition is different from that used in the triggering
workflow (which looks at consecutive bad buckets), since
when scaling time dilation it is generally more useful to
look at patterns of behavior over non-contiguous periods
of time (to account for scenarios where JavaScript pro-
gram 104 may temporarily halt or slow down its call rate
activity in an attempt to fool mitigation mechanisms).
[0041] If the number of bad buckets encountered within
the last Y buckets is between some low watermark A and
some high watermark B, it can be concluded that the call
rate behavior of JavaScript program 104 is about the

9 10

EP 3 785 157 B1

7

5

10

15

20

25

30

35

40

45

50

55

same as before (i.e., has gotten neither better nor worse)
and call rate tracking module 110 can return to block 402
in order to start a timer for a new bucket and repeat the
preceding steps. Note that in this case, pause task mod-
ule 112 and explicit clock warp module 114 will continue
to insert wait time and warp explicit clock values for Java-
Script program 104 in accordance with what they were
doing before.
[0042] On the other hand, if the number of bad buckets
encountered within the last Y buckets is greater than the
high watermark B, it can be concluded that the call rate
behavior/activity of JavaScript program 104 is increas-
ing/getting worse. In this case, high watermark B can be
incremented/increased and web platform application 102
can scale up the degree of time dilation applied to Java-
Script program 104 (block 418). For example, if pause
task module 112 was previously inserting a randomly
generated amount of wait time into the API execution
flow according to a certain range (e.g., 0 to 255 micro-
seconds), module 112 can increase the top value of this
range such that the maximum possible wait time is in-
creased. Further, if explicit clock warp module 114 was
previously warping the time values returned by explicit
clock APIs to program 104 according to some clamping
interval and some amount of random jitter, module 114
can increase the clamping interval and/or range of ran-
dom jitter, such that the time observed by JavaScript pro-
gram 104 is even further removed from real time. Call
rate tracking module 110 can then return to block 402 in
order to start a timer for a new bucket and repeat the
preceding steps.
[0043] Finally, if the number of bad buckets encoun-
tered within the last Y buckets is less than the low wa-
termark A, it can be concluded that the call rate behav-
ior/activity of JavaScript program 104 is decreasing/get-
ting better. In this case, low watermark A can be decre-
mented/decreased and web platform application 102 can
scale down the degree of time dilation applied to Java-
Script program 104 (block 420). For example, if pause
task module 112 was previously inserting a randomly
generated amount of wait time into the API execution
flow according to a certain range, module 112 can de-
crease the top value of this range such that the maximum
possible wait time is decreased. Further, if explicit clock
warp module 114 was previously warping the time values
returned by explicit clock APIs to program 104 according
to some clamping interval and some amount of random
jitter, module 114 can decrease the clamping interval
and/or range of random jitter, such that the time observed
by JavaScript program 104 is less removed from real
time. Call rate tracking module 110 can then return to
block 402 in order to start a timer for a new bucket and
repeat the preceding steps.
[0044] Generally speaking, in various embodiments,
web platform application 102 can scale up or down the
wait time inserted by pause task module 112 and warping
performed by explicit clock warp module 114 either in-
dependently or in a combined manner according to var-

ious policies. For example, if call rate tracking module
110 detects a significant change in call rate behavior with
respect to explicit clock APIs but not implicit clock APIs,
application 102 may solely scale explicit clock warping.
Conversely, if call rate tracking module 110 detects a
significant change in call rate behavior with respect to
implicit clock APIs but not explicit clock APIs, application
102 may solely scale wait time insertion. As another ex-
ample, a significant change in behavior with respect to
implicit clocks may also cause scaling of explicit clock
warping, and vice versa. All of these permutations, and
more, are within the scope of the present disclosure.
[0045] Further, although not shown in FIG. 4, in some
embodiments web platform application 102 may take
special measures if JavaScript program 104 behaves ex-
ceptionally well or badly over an extended period of time.
For instance, if high watermark B reaches a maximum
threshold (indicating that the call rate activity/behavior of
JavaScript program 104 has gotten progressively
worse), application 102 may simply terminate the proc-
ess associated with the program rather than continuing
to scale the time dilation experienced by the program any
further. Similarly, if low watermark A reaches a minimum
threshold (indicating that the call rate activity/behavior of
JavaScript program 104 has gotten progressively better),
application 102 may completely turn off time dilation for
program 104. In this scenario, time dilation may be trig-
gered again per workflow 300 if JavaScript program 104
begins exhibiting bad behavior again in the future.

6. Leveraging Telemetry

[0046] In some embodiments, web platform applica-
tion 102 can include a telemetry component that enables
it to communicate information regarding the time dilation
performed with respect to JavaScript program 104 and
other downloaded JavaScript code to one or more remote
servers. Examples of such information include the web
pages/URLs comprising program 104, the measured call
rate activity of program 104, whether time dilation was
triggered for program 104, whether time dilation was
scaled for program 104, the particular parameters used
for the time dilation triggering/scaling, system perform-
ance parameters when time dilation was turned on, and
so on.
[0047] The servers can then aggregate this information
across a large population of applications/users and de-
termine statistics and trends which can be used for var-
ious purposes. For example, in one set of embodiments,
the servers can identify a "whitelist" of web pages that
are highly unlikely to contain JavaScript code that is at-
tempting to perpetrate a timing attack, as well as a "black-
list" of web pages that are highly likely to contain such
malicious JavaScript code. The whitelist and blacklist can
then be communicated back to web platform application
102 (and/or to other client applications such as anti-vi-
rus/anti-malware software), which can uses these lists
to, e.g., block user access to blacklisted sites, turn off

11 12

EP 3 785 157 B1

8

5

10

15

20

25

30

35

40

45

50

55

time dilation by default for whitelisted sites, and/or imple-
ment more relaxed time dilation policies/parame-
ters/rules for whitelisted sites.
[0048] As another example, the statistics determined
by the remote servers can be used to inform and fine
tune the time dilation triggering and scaling algorithms
described above, such that they perform as expected
and without unnecessary or burdensome performance
penalties. For instance, the remote servers may deter-
mine that one particular algorithm used to perform explicit
clock warping results in excessive stuttering on a few
popular websites, which may instigate a change to a dif-
ferent algorithm. Further, the remote servers may deter-
mine that the scaling algorithm may cause a particular
nonmalicious website to crash when loaded, which may
result in a modification to the scaling parameters to avoid
this incompatibility. One of ordinary skill in the art will
recognize other possible use cases for this collected da-
ta.

7. Example Computer System

[0049] FIG. 5 is a simplified block diagram illustrating
the architecture of an example computer system 500 ac-
cording to certain embodiments. Computer system 500
(and/or equivalent systems/devices) may be used to run
any of the software described in the foregoing disclosure,
including web platform application 102 of FIG. 1. As
shown in FIG. 5, computer system 500 includes one or
more processors 502 that communicate with a number
of peripheral devices via a bus subsystem 504. These
peripheral devices include a storage subsystem 506
(comprising a memory subsystem 508 and a file storage
subsystem 510), user interface input devices 512, user
interface output devices 514, and a network interface
subsystem 516.
[0050] Bus subsystem 504 can provide a mechanism
for letting the various components and subsystems of
computer system 500 communicate with each other as
intended. Although bus subsystem 504 is shown sche-
matically as a single bus, alternative embodiments of the
bus subsystem can utilize multiple busses.
[0051] Network interface subsystem 516 can serve as
an interface for communicating data between computer
system 500 and other computer systems or networks.
Embodiments of network interface subsystem 516 can
include, e.g., an Ethernet module, a Wi-Fi and/or cellular
connectivity module, and/or the like.
[0052] User interface input devices 512 can include a
keyboard, pointing devices (e.g., mouse, trackball,
touchpad, etc.), a touch-screen incorporated into a dis-
play, audio input devices (e.g., voice recognition sys-
tems, microphones, etc.), motion-based controllers, and
other types of input devices. In general, use of the term
"input device" is intended to include all possible types of
devices and mechanisms for inputting information into
computer system 500.
[0053] User interface output devices 514 can include

a display subsystem and nonvisual output devices such
as audio output devices, etc. The display subsystem can
be, e.g., a transparent or non-transparent display screen
such as a liquid crystal display (LCD) or organic light-
emitting diode (OLED) display that is capable of present-
ing 2D and/or 3D imagery. In general, use of the term
"output device" is intended to include all possible types
of devices and mechanisms for outputting information
from computer system 500.
[0054] Storage subsystem 506 includes a memory
subsystem 508 and a file/disk storage subsystem 510.
Subsystems 508 and 510 represent non-transitory com-
puter-readable storage media that can store program
code and/or data that provide the functionality of embod-
iments of the present disclosure.
[0055] Memory subsystem 508 includes a number of
memories including a main random access memory
(RAM) 518 for storage of instructions and data during
program execution and a read-only memory (ROM) 520
in which fixed instructions are stored. File storage sub-
system 510 can provide persistent (i.e., non-volatile) stor-
age for program and data files, and can include a mag-
netic or solid-state hard disk drive, an optical drive along
with associated removable media (e.g., CD-ROM, DVD,
Blu-Ray, etc.), a removable or non-removable flash
memory-based drive, and/or other types of storage me-
dia known in the art.
[0056] It should be appreciated that computer system
500 is illustrative and other configurations having more
or fewer components than computer system 500 are pos-
sible.
[0057] The above description illustrates various em-
bodiments of the present disclosure along with examples
of how aspects of these embodiments may be imple-
mented. The above examples and embodiments should
not be deemed to be the only embodiments, and are pre-
sented to illustrate the flexibility and advantages of the
present disclosure as defined by the following claims.
For example, although certain embodiments have been
described with respect to particular process flows and
steps, it should be apparent to those skilled in the art that
the scope of the present disclosure is not strictly limited
to the described flows and steps. Steps described as
sequential may be executed in parallel, order of steps
may be varied, and steps may be modified, combined,
added, or omitted. As another example, although certain
embodiments have been described using a particular
combination of hardware and software, it should be rec-
ognized that other combinations of hardware and soft-
ware are possible, and that specific operations described
as being implemented in software can also be implement-
ed in hardware and vice versa.
[0058] The specification and drawings are, according-
ly, to be regarded in an illustrative rather than restrictive
sense. Other arrangements, embodiments, implementa-
tions and equivalents will be evident to those skilled in
the art and may be employed without departing from the
scope of the present disclosure as set forth in the follow-

13 14

EP 3 785 157 B1

9

5

10

15

20

25

30

35

40

45

50

55

ing claims.

Claims

1. A computer system (500) comprising:

a processor (502); and
a computer readable storage medium (508, 510)
having stored thereon program code that, when
executed by the processor, causes the proces-
sor to:

enable time dilation with respect to a pro-
gram, the time dilation causing the program
to observe a dilated view of time relative to
real time (218); and
while the time dilation is enabled:

track a count of application program-
ming interface (API) calls or callbacks
made by a program within each of a se-
ries of time buckets (404); and
based on counts tracked for a range of
recent time buckets, scale up or scale
down a degree of the time dilation (418,
420),

wherein if the count exceeds a threshold count
within each of a high watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled up (416, 418), and/or
wherein if the count falls below a threshold count
within each of a low watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled down (416, 420).

2. The computer system of claim 1 wherein the count
of API calls or callbacks include one or more calls or
callbacks to APIs usable by the program for con-
structing an implicit clock (404).

3. The computer system of claim 2 wherein scaling up
or scaling down the degree of the time dilation com-
prises:
increasing or decreasing an amount of wait time in-
serted into the calls or callbacks to the APIs usable
for constructing an implicit clock (112).

4. The computer system of claim 1 wherein the count
of API calls or callbacks include one or more calls to
explicit clock APIs configured to return time values
derived from one or more hardware signals of the
computer system (404).

5. The computer system of claim 4 wherein scaling up
or scaling down the degree of the time dilation com-
prises: increasing or decreasing a degree of warping

applied to the time values returned by the explicit
clock APIs before passing the time values to the pro-
gram, wherein the warping is performed by trans-
forming the time values using a randomly determined
linear or non-linear transformation function (114,
320).

6. A method for mitigating timing attacks via dynami-
cally scaled time dilation, the method comprising:

enabling, by a computer system, time dilation
with respect to a program, the time dilation caus-
ing the program to observe a dilated view of time
relative to real time (218); and
while the time dilation is enabled:

tracking, by the computer system, a count
of application programming interface (API)
calls or callbacks made by a program within
each of a series of time buckets (404); and
based on counts tracked for a range of re-
cent time buckets, scaling up or scaling
down a degree of the time dilation (418,
420),

wherein if the count exceeds a threshold count
within each of a high watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled up (416, 418), and/or
wherein if the count falls below a threshold count
within each of a low watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled down (416, 420).

7. The method of claim 6 wherein the count of API calls
or callbacks include one or more calls or callbacks
to APIs usable by the program for constructing an
implicit clock (404).

8. The method of claim 6 wherein the count of API calls
or callbacks include one or more calls to explicit clock
APIs configured to return time values derived from
one or more hardware signals of the computer sys-
tem (404).

9. A computer readable storage medium having stored
thereon program code executable by a computer
system, the program code causing the computer sys-
tem to:

enable time dilation with respect to a program,
the time dilation causing the program to observe
a dilated view of time relative to real time (218);
and
while the time dilation is enabled:

track a count of application programming in-
terface (API) calls or callbacks made by a

15 16

EP 3 785 157 B1

10

5

10

15

20

25

30

35

40

45

50

55

program within each of a series of time
buckets (404); and
based on counts tracked for a range of re-
cent time buckets, scale up or scale down
a degree of the time dilation (418, 420),

wherein if the count exceeds a threshold count
within each of a high watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled up (416, 418), and/or
wherein if the count falls below a threshold count
within each of a low watermark of time buckets
in the range of recent time buckets, the degree
of the time dilation is scaled down (416, 420).

10. The computer readable storage medium of claim 9
wherein the count of API calls or callbacks include
one or more calls or callbacks to APIs usable by the
program for constructing an implicit clock (404).

11. The computer readable storage medium of claim 9
wherein the count of API calls or callbacks include
one or more calls to explicit clock APIs configured
to return time values derived from one or more hard-
ware signals of the computer system (404).

Patentansprüche

1. Rechensystem (500), umfassend:

einen Prozessor (502); und
ein computerlesbares Speichermedium (508,
510), auf dem Programmcode gespeichert ist,
der, wenn er von dem Prozessor ausgeführt
wird, den Prozessor zu Folgendem veranlasst:

Aktivieren der Zeitdilatation in Bezug auf ein
Programm, wobei die Zeitdilatation das Pro-
gramm veranlasst, eine gedehnte Sicht der
Zeit relativ zu der Echtzeit (218) zu beob-
achten; und
während die Zeitdilatation aktiviert ist:

Verfolgen einer Anzahl von Aufrufen
der Anwendungsprogrammierschnitt-
stelle (API) oder von Rückrufen, die von
einem Programm innerhalb einer Rei-
he von Zeitabschnitten (404) gemacht
wurden; und
basierend auf der verfolgten Anzahl für
eine Reihe von Zeitabschnitten, Ver-
größern oder Verkleinern eines Grades
der Zeitdilatation (418, 420),

wobei, wenn die Anzahl einen Schwellenwert in-
nerhalb jedes einer hohen Wassermarke von
Zeitabschnitten im Bereich der jüngsten Zeitab-

schnitte überschreitet, der Grad der Zeitdilatati-
on vergrößert wird (416, 418), und/oder
wobei, wenn die Anzahl unter einen Schwellen-
wert innerhalb jedes einer hohen Wassermarke
von Zeitabschnitten im Bereich der jüngsten
Zeitabschnitte fällt, der Grad der Zeitdilatation
verkleinert wird (416, 420).

2. Rechensystem nach Anspruch 1, wobei die Anzahl
der API-Aufrufe oder - Rückrufe einen oder mehrere
Aufrufe oder Rückrufe zu APIs beinhaltet, die von
dem Programm zur Konstruktion einer impliziten Uhr
(404) verwendet werden können.

3. Rechensystem nach Anspruch 2, wobei das Vergrö-
ßern oder Verkleinern des Grades der Zeitdilatation
umfasst:
Erhöhen oder Verringern eines Betrags an Warte-
zeit, der in die Aufrufe oder Rückrufe zu den APIs
eingefügt wird, die für die Konstruktion einer implizi-
ten Uhr (112) verwendet werden können.

4. Rechensystem nach Anspruch 1, wobei die Anzahl
der API-Aufrufe oder Rückrufe einen oder mehrere
Aufrufe zu expliziten Uhren-APIs beinhaltet, die so
konfiguriert sind, dass sie Zeitwerte zurückgeben,
die von einem oder mehreren Hardwaresignalen des
Rechensystems (404) abgeleitet sind.

5. Rechensystem nach Anspruch 4, wobei das Vergrö-
ßern oder Verkleinern des Grades der Zeitdilatation
umfasst:
Erhöhen oder Verringern eines Grades der Verzer-
rung, der auf die von den expliziten Uhren-APIs zu-
rückgegebenen Zeitwerte angewandt wird, bevor die
Zeitwerte an das Programm weitergegeben werden,
wobei die Verzerrung durch Transformieren der Zeit-
werte unter Verwendung einer zufällig bestimmten
linearen oder nichtlinearen Transformationsfunktion
(114, 320) durchgeführt wird.

6. Verfahren zum Abschwächen von Zeitangriffen mit-
tels dynamisch skalierter Zeitdilatation, wobei das
Verfahren umfasst:

Aktivieren der Zeitdilatation in Bezug auf ein
Programm durch ein Rechensystem, wobei die
Zeitdilatation das Programm veranlasst, eine
gedehnte Sicht der Zeit relativ zu der Echtzeit
(218) zu beobachten; und
während die Zeitdilatation aktiviert ist:

Verfolgen einer Anzahl von Aufrufen der
Anwendungsprogrammierschnittstelle
(API) oder von Rückrufen durch das Re-
chensystem, die von einem Programm in-
nerhalb einer Reihe von Zeitabschnitten
(404) gemacht wurden; und

17 18

EP 3 785 157 B1

11

5

10

15

20

25

30

35

40

45

50

55

basierend auf der verfolgten Anzahl für eine
Reihe von Zeitabschnitten, Vergrößern
oder Verkleinern eines Grades der Zeitdila-
tation (418, 420),

wobei, wenn die Anzahl einen Schwellenwert in-
nerhalb jedes einer hohen Wassermarke von
Zeitabschnitten im Bereich der jüngsten Zeitab-
schnitte überschreitet, der Grad der Zeitdilatati-
on vergrößert wird (416, 418), und/oder
wobei, wenn die Anzahl unter einen Schwellen-
wert innerhalb jedes einer hohen Wassermarke
von Zeitabschnitten im Bereich der jüngsten
Zeitabschnitte fällt, der Grad der Zeitdilatation
verkleinert wird (416, 420).

7. Verfahren nach Anspruch 6, wobei die Anzahl der
API-Aufrufe oder -Rückrufe einen oder mehrere Auf-
rufe oder Rückrufe zu APIs beinhaltet, die von dem
Programm zur Konstruktion einer impliziten Uhr
(404) verwendet werden können.

8. Verfahren nach Anspruch 6, wobei die Anzahl der
API-Aufrufe oder Rückrufe einen oder mehrere Auf-
rufe zu expliziten Uhren-APIs beinhaltet, die so kon-
figuriert sind, dass sie Zeitwerte zurückgeben, die
von einem oder mehreren Hardwaresignalen des
Rechensystems (404) abgeleitet sind.

9. Computerlesbares Speichermedium, auf dem ein
Programmcode gespeichert ist, der von einem Re-
chensystem ausgeführt werden kann, wobei der
Programmcode das Rechensystem zu Folgendem
veranlasst:

Aktivieren der Zeitdilatation in Bezug auf ein
Programm, wobei die Zeitdilatation das Pro-
gramm veranlasst, eine gedehnte Sicht der Zeit
relativ zu der Echtzeit (218) zu beobachten; und
während die Zeitdilatation aktiviert ist:

Verfolgen einer Anzahl von Aufrufen der
Anwendungsprogrammierschnittstelle
(API) oder von Rückrufen, die von einem
Programm innerhalb einer Reihe von Zeit-
abschnitten (404) gemacht wurden; und
basierend auf der verfolgten Anzahl für eine
Reihe von Zeitabschnitten, Vergrößern
oder Verkleinern eines Grades der Zeitdila-
tation (418, 420),

wobei, wenn die Anzahl einen Schwellenwert in-
nerhalb jedes einer hohen Wassermarke von
Zeitabschnitten im Bereich der jüngsten Zeitab-
schnitte überschreitet, der Grad der Zeitdilatati-
on vergrößert wird (416, 418), und/oder
wobei, wenn die Anzahl unter einen Schwellen-
wert innerhalb jedes einer hohen Wassermarke

von Zeitabschnitten im Bereich der jüngsten
Zeitabschnitte fällt, der Grad der Zeitdilatation
verkleinert wird (416, 420).

10. Computerlesbares Speichermedium nach Anspruch
9, wobei die Anzahl der API-Aufrufe oder -Rückrufe
einen oder mehrere Aufrufe oder Rückrufe zu APIs
beinhaltet, die von dem Programm zur Konstruktion
einer impliziten Uhr (404) verwendet werden kön-
nen.

11. Computerlesbares Speichermedium nach Anspruch
9, wobei die Anzahl der API-Aufrufe oder Rückrufe
einen oder mehrere Aufrufe zu expliziten Uhren-
APIs beinhaltet, die so konfiguriert sind, dass sie
Zeitwerte zurückgeben, die von einem oder mehre-
ren Hardwaresignalen des Rechensystems (404)
abgeleitet sind.

Revendications

1. Système informatique (500) comprenant :

un processeur (502) ; et
un support de stockage lisible par ordinateur
(508, 510) sur lequel est stocké un code de pro-
gramme qui, lorsqu’il est exécuté par le proces-
seur, amène le processeur à :

activer une dilatation temporelle par rapport
à un programme, la dilatation temporelle
amenant le programme à observer une vue
dilatée du temps par rapport à un temps réel
(218) ; et
tandis que la dilatation temporelle est
activée :

suivre un nombre d’appels ou de rap-
pels à une interface de programmation
d’application (API) réalisés par un pro-
gramme au sein de chaque comparti-
ment d’une série de compartiments
temporels (404) ; et
en fonction des nombres suivis pour
une plage de compartiments temporels
récents, échelonner un degré de la di-
latation temporelle à la hausse ou à la
baisse (418, 420),

dans lequel, si le nombre dépasse un nom-
bre seuil au sein de chaque repère haut de
compartiments temporels dans la plage de
compartiments temporels récents, le degré
de la dilatation temporelle est échelonné à
la hausse (416, 418), et/ou
dans lequel, si le nombre descend sous un
nombre seuil au sein de chaque repère bas

19 20

EP 3 785 157 B1

12

5

10

15

20

25

30

35

40

45

50

55

de compartiments temporels dans la plage
de compartiments temporels récents, le de-
gré de la dilatation temporelle est échelon-
né à la baisse (416, 420).

2. Système informatique selon la revendication 1 dans
lequel le nombre d’appels ou de rappels à une API
comprend un ou plusieurs appels ou rappels à des
API utilisables par le programme pour construire une
horloge implicite (404).

3. Système informatique selon la revendication 2 dans
lequel l’échelonnement à la hausse ou à la baisse
du degré de dilatation temporelle comprend :
l’augmentation ou la diminution d’une quantité de
temps d’attente insérée dans les appels ou les rap-
pels aux API utilisables pour construire une horloge
implicite (112).

4. Système informatique selon la revendication 1 dans
lequel le nombre d’appels ou de rappels à une API
comprend un ou plusieurs appels à des API d’hor-
loge explicite configurées pour renvoyer des valeurs
temporelles dérivées d’un ou plusieurs signaux ma-
tériels du système informatique (404).

5. Système informatique selon la revendication 4 dans
lequel l’échelonnement à la hausse ou à la baisse
du degré de dilatation temporelle comprend :
l’augmentation ou la diminution d’un degré de défor-
mation appliqué aux valeurs temporelles renvoyées
par les API d’horloge explicite avant de transférer
les valeurs temporelles au programme, dans lequel
la déformation est réalisée en transformant les va-
leurs temporelles à l’aide d’une fonction de transfor-
mation linéaire ou non linéaire déterminée de ma-
nière aléatoire (114, 320).

6. Procédé d’atténuation d’attaques temporelles via
une dilatation temporelle échelonnée dynamique-
ment, le procédé comprenant :

l’activation, par un système informatique, d’une
dilatation temporelle par rapport à un program-
me, la dilatation temporelle amenant le pro-
gramme à observer une vue dilatée du temps
par rapport à un temps réel (218) ; et
tandis que la dilatation temporelle est activée :

le suivi, par le système informatique, d’un
nombre d’appels ou de rappels à une inter-
face de programmation d’application (API)
réalisés par un programme au sein de cha-
que compartiment d’une série de comparti-
ments temporels (404) ; et
en fonction des nombres suivis pour une
plage de compartiments temporels récents,
l’échelonnement d’un degré de la dilatation

temporelle à la hausse ou à la baisse (418,
420),
dans lequel, si le nombre dépasse un nom-
bre seuil au sein de chaque repère haut de
compartiments temporels dans la plage de
compartiments temporels récents, le degré
de la dilatation temporelle est échelonné à
la hausse (416, 418), et/ou
dans lequel, si le nombre descend sous un
nombre seuil au sein de chaque repère bas
de compartiments temporels dans la plage
de compartiments temporels récents, le de-
gré de la dilatation temporelle est échelon-
né à la baisse (416, 420).

7. Procédé selon la revendication 6 dans lequel le nom-
bre d’appels ou de rappels à une API comprend un
ou plusieurs appels ou rappels à des API utilisables
par le programme pour construire une horloge im-
plicite (404).

8. Procédé selon la revendication 6 dans lequel le nom-
bre d’appels ou de rappels à une API comprend un
ou plusieurs appels à des API d’horloge explicite
configurées pour renvoyer des valeurs temporelles
dérivées d’un ou plusieurs signaux matériels du sys-
tème informatique (404).

9. Support de stockage lisible par ordinateur sur lequel
est stocké un code de programme exécutable par
un système informatique, le code de programme
amenant le système informatique à :

activer une dilatation temporelle par rapport à
un programme, la dilatation temporelle amenant
le programme à observer une vue dilatée du
temps par rapport à un temps réel (218) ; et
tandis que la dilatation temporelle est activée :

suivre un nombre d’appels ou de rappels à
une interface de programmation d’applica-
tion (API) réalisés par un programme au
sein de chaque compartiment d’une série
de compartiments temporels (404) ; et
en fonction des nombres suivis pour une
plage de compartiments temporels récents,
échelonner un degré de la dilatation tempo-
relle à la hausse ou à la baisse (418, 420),

dans lequel, si le nombre dépasse un nombre
seuil au sein de chaque repère haut de compar-
timents temporels dans la plage de comparti-
ments temporels récents, le degré de la dilata-
tion temporelle est échelonné à la hausse (416,
418), et/ou
dans lequel, si le nombre descend sous un nom-
bre seuil au sein de chaque repère bas de com-
partiments temporels dans la plage de compar-

21 22

EP 3 785 157 B1

13

5

10

15

20

25

30

35

40

45

50

55

timents temporels récents, le degré de la dilata-
tion temporelle est échelonné à la baisse (416,
420).

10. Support de stockage lisible par ordinateur selon la
revendication 9 dans lequel le nombre d’appels ou
de rappels à une API comprend un ou plusieurs ap-
pels ou rappels à des API utilisables par le program-
me pour construire une horloge implicite (404).

11. Support de stockage lisible par ordinateur selon la
revendication 9 dans lequel le nombre d’appels ou
de rappels à une API comprend un ou plusieurs ap-
pels à des API d’horloge explicite configurées pour
renvoyer des valeurs temporelles dérivées d’un ou
plusieurs signaux matériels du système informatique
(404).

23 24

EP 3 785 157 B1

14

EP 3 785 157 B1

15

EP 3 785 157 B1

16

EP 3 785 157 B1

17

EP 3 785 157 B1

18

EP 3 785 157 B1

19

EP 3 785 157 B1

20

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 2013172913 A2 [0003] • US 2014380474 A1 [0003]

Non-patent literature cited in the description

• Predictive black-box mitigation of timing channels.
ASLAN ASKAROV et al. PROCEEDINGS OF THE
17TH ACM CONFERENCE ON COMPUTER AND
COMMUNICATIONS SECURITY. ACM, 04 October
2010 [0003]

	bibliography
	description
	claims
	drawings
	cited references

